Profile-Directed Optimization of Event-Based Programs

Mohan Rajagopalan Saumya K. Debray Department of Computer Science University of Arizona Tucson, AZ 85721, USA

{mohan, debray}@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting AT&T Labs-Research 180 Park Avenue Florham Park, NJ 07932, USA

{hiltunen, rick}@research.att.com

2010.05.17 読んだ人:みよしたけふみ

Cited By

↑ CITED BY 7

Maja Pusara , Carla E. Brodley, User re-authentication via mouse movements, Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security, October 29-29, 2004, Washington DC, USA

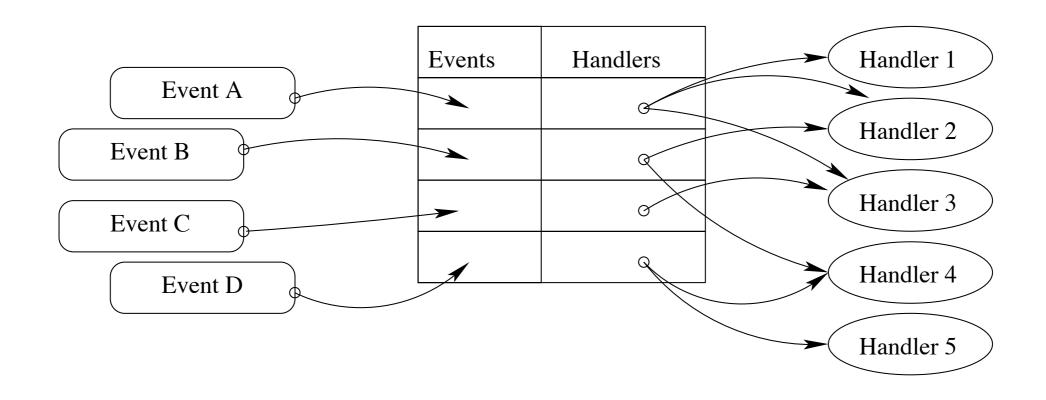
Matti Hiltunen, François Taïani, Richard Schlichting, Reflections on aspects and configurable protocols, Proceedings of the 5th international conference on Aspect-oriented software development, March 20-24, 2006, Bonn, Germany

Wen Xu , Sanjeev Kumar , Kai Li, Fast Paths in Concurrent Programs, Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques, p.189-200, September 29-October 03, 2004

Patrick G. Bridges, Gary T. Wong, Matti Hiltunen, Richard D. Schlichting, Matthew J. Barrick, A configurable and extensible transport protocol, IEEE/ACM Transactions on Networking (TON), v.15 n.6, p.1254-1265, December 2007

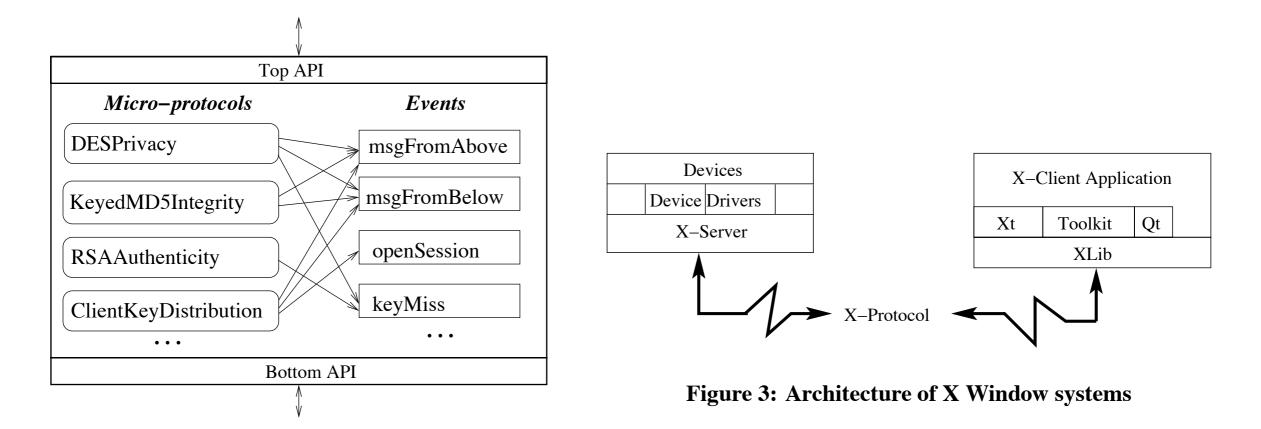
Sapan Bhatia , Charles Consel , Julia Lawall, Memory-manager/scheduler co-design: optimizing event-driven servers to improve cache behavior, Proceedings of the 2006 international symposium on Memory management, June 10-11, 2006, Ottawa, Ontario, Canada

Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan Rajagopalan, Richard L. Hudson, Leaf Petersen, Vijay Menon, Brian Murphy, Tatiana Shpeisman, Eric Sprangle, Anwar Rohillah, Doug Carmean, Jesse Fang, Enabling scalability and performance in a large scale CMP environment, ACM SIGOPS Operating Systems Review, v.41 n.3, June 2007


Jason Mars, Robert Hundt, Scenario Based Optimization: A Framework for Statically Enabling Online Optimizations, Proceedings of the 2009 International Symposium on Code Generation and Optimization, p.169-179, March 22-25, 2009

概要

🎽 イベントベースの抽象化 🖗 GUI. ネットワークプロトコル イベントを起こすのとハンドラ間の オーバヘッド大 🎽 プロファイリングベースの最適化


exploits the underlying predictability

Components

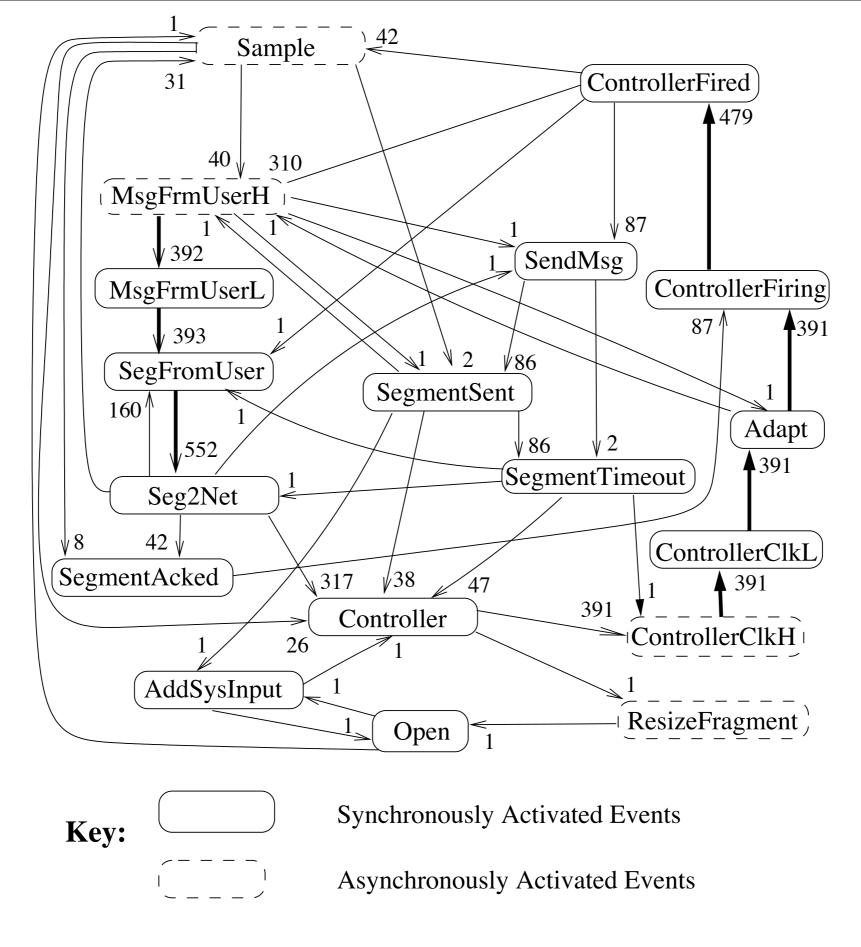
Figure 1: Event bindings

Examples

Figure 2: Cactus composite protocol

5

Approach


Event Profiling

- Optimization Techniques
 - Graph Optimizations
 - Compiler Optimizations
- Dealing with the Unexpected

Event Profiling

```
EventGraph = Ø;
prev_event = eventTrace→firstEvent;
while not (end of eventTrace) {
    event = eventTrace→nextEvent;
    if (prev_event,event) not in EventGraph {
       EventGraph += (prev_event,event);
       EventGraph(prev_event,event)→weight = 1;
    } else
       eventGraph(prev_event,event)→weight++;
    prev_event = event;
}
```

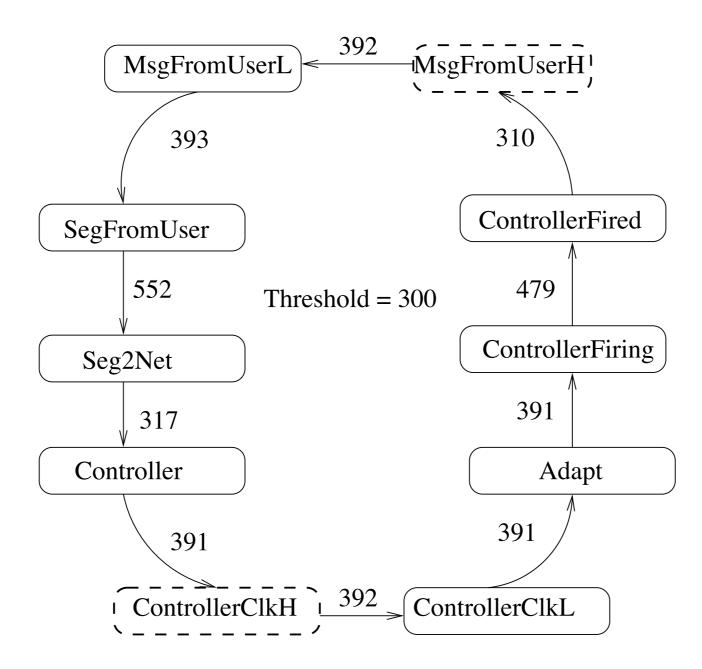

Figure 4: GraphBuilder algorithm.

Figure 5: Event graph generated from video player

Graph Optimizations(1)

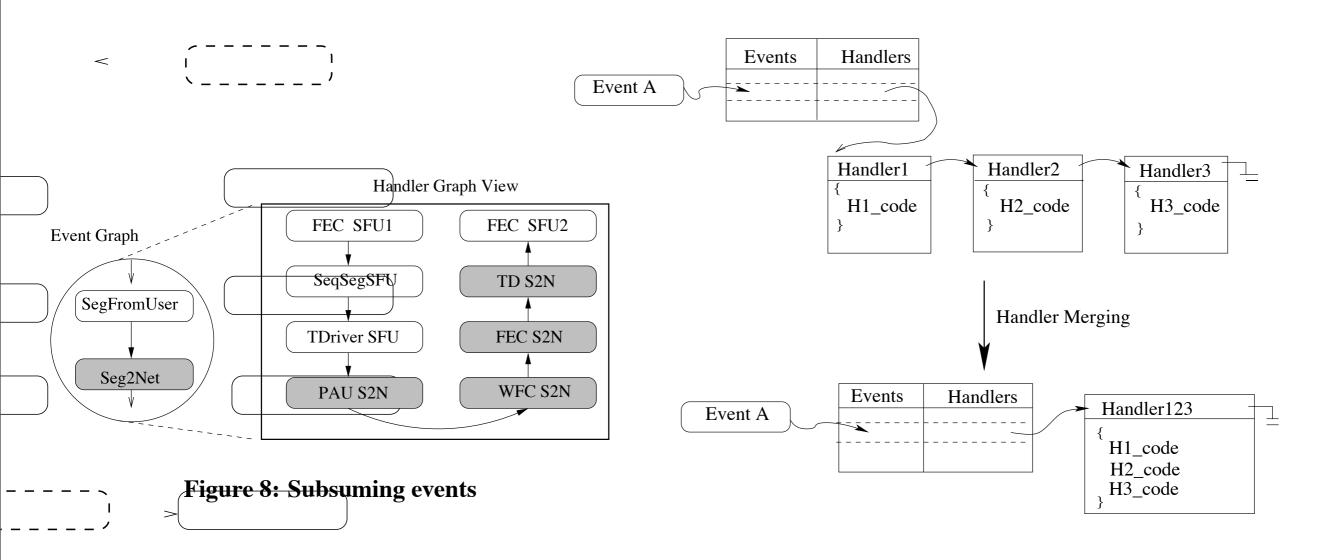

Handler Merging

Figure 6: Reduced event graph

Graph Optimizations(2)

Event Chains and Subsumption

Figure 7: Handler merging

Compiler Optimizations

Function Inlining

🖗 定数伝播と不要命令の除去

Redundant Code Elimination

Experiment Results

	Total Execution Time (sec)			Event Handler Time (sec)		
Frame rate	Orig. (T_0)	Opt. (T_1)	T_1/T_0 (%)	Orig. (T_0)	Opt. (T_1)	T_1/T_0 (%)
10	43.1	41.9	97.2	2.3	0.9	39.1
15	30.9	30.3	98.0	1.6	0.6	37.5
20	24.5	22.1	90.2	1.5	0.5	33.3
25	23.9	21.3	89.1	1.5	0.5	33.3

Key: Orig: Original program; Opt: Optimized program

Figure 10: Video player optimization results.

	Push time (μ sec)			Pop time (μ sec)		
Size	Orig. (T_0)	Opt. (T_1)	T_1/T_0 (%)	Orig. (T_0)	Opt. (T_1)	T_1/T_0 (%)
64	274	241	88.0	397	378	95.2
128	287	263	91.6	460	448	97.4
256	304	273	89.8	484	457	94.4
512	336	299	89.0	494	470	95.1
1024	430	373	86.7	608	570	93.8
2048	572	552	96.5	1016	893	87.9

Figure 12:]	Impact of c	ptimization	in SecComm

Event	Processing	Speedup	
	Original Optimized		(%)
Adapt	55	11	80.0
SegFromUser	346	41	88.2
Seg2Net	137	37	73.0

Figure 11: Event processing times in the video player.

Event	Execution 7	T_{1}/T_{0}	
Туре	Orig. (T_0)	Opt. (T_1)	(%)
Scroll	158	148	93.7
Рорир	37	31	83.8

Figure 13: Optimization of X events