
2010.05.17
読んだ人: みよしたけふみ

Profile-Directed Optimization of Event-Based Programs

Mohan Rajagopalan Saumya K. Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

mohan, debray @cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932, USA

hiltunen, rick @research.att.com

ABSTRACT
Events are used as a fundamental abstraction in programs ranging
from graphical user interfaces (GUIs) to systems for building cus-
tomized network protocols. While providing a flexible structuring
and execution paradigm, events have the potentially serious draw-
back of extra execution overhead due to the indirection between
modules that raise events and those that handle them. This pa-
per describes an approach to addressing this issue using static opti-
mization techniques. This approach, which exploits the underlying
predictability often exhibited by event-based programs, is based on
first profiling the program to identify commonly occurring event
sequences. A variety of techniques that use the resulting profile in-
formation are then applied to the program to reduce the overheads
associated with such mechanisms as indirect function calls and ar-
gument marshaling. In addition to describing the overall approach,
experimental results are given that demonstrate the effectiveness
of the techniques. These results are from event-based programs
written for X Windows, a system for building GUIs, and Cactus,
a system for constructing highly configurable distributed services
and network protocols.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compilers; opti-
mization

General Terms
Profiling, Events, Handlers, Performance

1. INTRODUCTION
Events are increasingly being used as a fundamental abstraction

for writing programs in a variety of contexts. They are used to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02 June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

structure user interaction code in GUI systems [8, 18], form the
basis for configurability in systems to build customized distributed
services and network protocols [4, 9, 16], are the paradigm used for
asynchronous notification in distributed object systems [19], and
are advocated as an alternative to threads in web servers and other
types of system code [20, 23]. Even operating system kernels can
be viewed as event-based systems, with the occurrence of interrupts
and system calls being events that drive execution.
The rationale behind using events is multifaceted. Events are

asynchronous, which is a natural match for the reactive execution
behavior of GUIs and operating systems. Events also allow the
modules raising events to be decoupled from those fielding the
events, thereby improving configurability. In short, event-based
programming is generally more flexible and can often be used to
realize richer execution semantics than traditional procedural or
thread-oriented styles.
Despite these advantages, events have the potentially serious dis-

advantage of extra execution overhead due to the indirection be-
tween modules that raise and handle events [5, 14]. Typically, there
is a registry that maps an event to a collection of handlers to be exe-
cuted when the event occurs. Because these handlers are not known
statically—and may in fact change dynamically—they are invoked
indirectly. Depending on the system, the number and type of the
arguments passed to the handler may also not be known, requiring
argument marshaling. Finally, there may be repeated work, e.g.,
initialization or checking of shared data structures, across multiple
handlers for a given event. All these extra costs can be surprisingly
high—our experiments indicate that they can account for up to 20%
of the total execution time in some scenarios.
This paper describes a collection of static optimizations designed

to reduce the overhead of event-based programs. Our approach ex-
ploits the underlying predictability of many event-based programs
to generate an event profile that is conceptually akin to a path profile
through the call graph of the program. These profiles are then used
to identify commonly encountered events, as well as the collec-
tion of handlers associated with each event and the order in which
they are executed. This information is then used to optimize event
execution by, for example, merging handlers and chaining events.
The techniques are specific to event-based programs, since stan-
dard optimization techniques are largely ineffective in this con-
text. For example, conventional static analysis techniques cannot
generally discover the connections between events and handlers,
let alone optimize away the associated overheads. Dynamic opti-

106

12010年5月17日月曜日

Cited By

22010年5月17日月曜日

概要

イベントベースの抽象化

GUI，ネットワークプロトコル

イベントを起こすのとハンドラ間の
オーバヘッド大

プロファイリングベースの最適化

exploits the underlying predictability

32010年5月17日月曜日

Componentsmization systems such as Dynamo [2] can be used in principle, but
they focus primarily on lightweight optimizations such as improv-
ing locality and instruction-cache usage in an effort to keep runtime
overheads low. In contrast, the optimizations we consider are sub-
stantially more heavyweight, and—in the context of event-based
programs—offer correspondingly greater benefits. Our techniques
are specifically designed to improve execution on small mobile de-
vices, where resource constraints make any reduction in overhead
valuable.

The remainder of the paper is organized as follows. Section 2
describes a general model for event-based programs. This is fol-
lowed in section 3 by a description of our approach to optimizing
such programs, including our profiling scheme and the collection
of optimization techniques based on these profiles. Section 4 gives
experimental results that demonstrate the potential improvements
for three different examples. The first two, a video application and
a configurable secure communication service, are built using Cac-
tus, a system for constructing highly configurable distributed ser-
vices and network protocols, that supports event-based execution
[10, 12]. The third is a client side tool that uses X Windows, a
popular system for building GUIs [18]. This is followed by discus-
sions of possible extensions in section 5 and related work in section
6. Finally, section 7 offers conclusions.

2. EVENT-BASED PROGRAMS
While event-based programs differ considerably depending on

the specifics of the underlying programming model and notation,
their architectures have a number of broad underlying similarities.
Because of this, the optimizations described in this paper are gen-
erally applicable to most such systems. This section presents a
general model for event-based systems in order to provide a com-
mon framework for discussion. As examples, we describe how both
Cactus and the X Windows system map into the model.

2.1 Components
Our general model consists of three main components: events,

handlers that specify the reaction to an event, and bindings that
specify which handlers are to be executed when a specific event
occurs.

Events. Events abstract the asynchronous occurrence of stimuli
that must be dealt with by a program. Mouse motion, button click,
and key press are examples of such events in a user interface con-
text, while receiving a packet from the network and message pass-
ing are examples in a systems context. In addition to such external
events, an event-based program may use internal events that are
generated and processed within the program. The set of events used
in the event system may be fixed or the system may allow programs
to define new events. Basic events may be composed into complex
events. For example, two basic button click events within a short
time period can be defined to constitute a double-click event.

Handlers. Handlers direct the response of the program to event-
based stimuli. Specifically, a handler is a section of code that
specifies the actions to be performed when a given event occurs.
Typically, handlers have at least one parameter, the event that was
raised; other parameters may be passed through variable argument
lists or through shared data structures. The decoupling provided
by the event mechanism allows handlers to be developed indepen-
dently from other handlers in the program.

Bindings. Bindings determine which handlers are executed when a
specific event occurs. The binding between an event and a hander is
often provided using some type of runtime bind operation, although
the binding may also be predefined and fixed. Most systems allow
multiple handlers to be bound to a single event and a handler to be

bound to more than one event. An event is ignored if no handlers
are bound to the event. The execution order of multiple handlers
bound to the same event may be important. Bindings may be static,
i.e., remain the same throughout the execution of the program, or
dynamic, i.e., may change at runtime. Figure 1 illustrates bindings.

Events Handlers
Event A

Event B

Event C

Event D

Handler 1

Handler 2

Handler 3

Handler 4

Handler 5

Figure 1: Event bindings

Bindings are maintained in a registry that maps each event to
a list of handlers. The registry may be implemented as a shared
data structure like the table shown in the figure, or each list may
be maintained as a part of an event data structure. For distributed
systems where handlers may be on distinct physical machines, the
registry may be implemented using either a centralized or decen-
tralized approach.

2.2 Execution
The handlers bound to an event are executed when the event oc-

curs. An event may occur because the program receives some exter-
nal stimulus (external event) or because some program component
raises the event (internal event). An execution environment or run-
time system is typically responsible for detecting or receiving exter-
nal stimuli and activating the corresponding events. As a result, we
say these events are raised implicitly, whereas events directly acti-
vated by a program component are raised explicitly. Timed events
are events that are activated at a specified time or after a specified
delay.

We identify two major types of event activation: synchronous
activation and asynchronous activation. With synchronous activa-
tion, the specified handlers are executed to completion before the
activator continues execution. With asynchronous activation, the
activator continues execution without any guarantees as to when
the handlers are executed. The different types of event activation
have specific uses in event-based systems. Synchronous activation
can be used for internal events when the event activator needs to
know when the processing of a message has completed before con-
tinuing its own processing. Synchronous activation can be used
for external events when the runtime system needs to ensure that
such events are executed sequentially without interleaving. Asyn-
chronous activation can be used when none of these requirements
apply.

The overall picture of the event-based program to be optimized
then consists of a program that reacts to stimuli from its environ-
ment, such as user actions or messages. These stimuli are con-
verted into events. Each event may have multiple handlers bound
to it and handlers may activate other events synchronously or asyn-
chronously. Thus, the occurrence of an event may lead to the ac-
tivation of a chain of handlers and other events and, in turn, their
handlers. Events can also be generated by the passage of time (e.g.,
timeouts). The type of event activation has implications on our
optimization techniques. For example, since the handlers for a syn-
chronous activation are executed when the event is raised, an opti-
mization that replaces the activation call with calls to the handlers

107

42010年5月17日月曜日

Examples

Top API

Bottom API

. . .

EventsMicro!protocols

. . .
keyMiss

msgFromBelow

openSession

DESPrivacy

RSAAuthenticity

ClientKeyDistribution

KeyedMD5Integrity

msgFromAbove

Figure 2: Cactus composite protocol

bound to the event at that time results in a correct transformation.
Similarly, it is easy to see that sequences of nested synchronous ac-
tivations can be readily optimized. The specific optimization tech-
niques and their limitations are discussed below in section 3.

2.3 Example Systems
Cactus. Cactus is a system and a framework for constructing

configurable protocols and services, where each service property
or functional component is implemented as a separate module [10].
As illustrated in figure 2, a service in Cactus is implemented as a
composite protocol, with each service property or other functional
component implemented as a micro-protocol. A customized in-
stance of the composite protocol is constructed simply by choosing
the appropriate set of micro-protocols. A micro-protocol is struc-
tured as a collection of event handlers that correspond to the han-
dlers in our general event-based model. A typical micro-protocol
consists of two or more event handlers. Events in Cactus are user-
defined. A typical composite protocol uses 10-20 different events
consisting of a few external events caused by interactions with soft-
ware outside the composite protocol and numerous internal events
used to structure the internal processing of a message or service
request. Each event typically has multiple event handlers. As a re-
sult, Cactus composite protocols often have long chains of events
and event handlers activated by one event. Section 4 gives concrete
examples of events used in a Cactus composite protocol.

The Cactus runtime system provides a variety of operations for
managing events and event handlers. In particular, operations are
provided for binding an event handler to a specified event (bind)
and for activating an event (raise). Event handler binding is com-
pletely dynamic. Events can be raised either synchronously or
asynchronously, and an event can also be raised with a specified
delay to implement time-driven execution. The order of event han-
dler execution can be specified if desired. Arguments can be passed
to handlers in both the bind and raise operations. Other operations
are available for unbinding handlers, creating and deleting events,
halting event execution, and canceling a delayed event. Handler
execution is atomic with respect to concurrency, i.e., a handler is
executed to completion before any other handler is started unless it
voluntarily yields the CPU. Cactus does not directly support com-
plex events, but such events can be implemented by defining a new
event and having a micro-protocol raise this event when the condi-
tions for the complex event are satisfied.

The X Window system. X is a popular GUI framework for Unix
systems. The standard architecture of an X based system is shown

in figure 3. The X server is a program that runs on each system
supporting a graphics display and is responsible for managing de-
vice drivers. Application programs, also called X clients, may be
local or remote to the display system. X servers and X clients use
the X-protocol for communication. X clients are typically built on
the Xlib libraries using toolkits such as Xt, GTK, or Qt. X clients
are implemented as a collection of widgets, which are the basic
building blocks of X applications.

An X event is defined as “a packet of data sent by the server to
the client in response to user behavior or to window system changes
resulting from interactions between windows” [18]. Examples of
X events include mouse motion, focus change, and button press.
These events are recognized through device drivers and relayed to
the X server, which in turn conveys them to X clients. The Xlib
framework specifies 33 basic events. X clients may choose to re-
spond to any of these based on event masks that are specified at
bind time. Events are also used for communication between wid-
gets. Events can arrive in any order and are queued by the X client.
Event activation in X is similar to synchronous activation in the
general model.

The X architecture has three mechanisms for handling events:
event handlers, callback functions, and action procedures. All these
map to handlers in the general model and are used to specify differ-
ent granularities of control. Event handlers, the most primitive, are
simply procedures bound to event names. Callback functions and
action procedures are more commonly used high-level abstractions.
One difference between the three mechanisms relates to scope—
actions have global scope in an X client, while the scope of event
handlers and callbacks is restricted to the widget in which they are
defined. Another difference is their execution semantics. An event
handler can be bound to multiple events in such a way that it is ex-
ecuted when any of the associated events occur. A callback func-
tion, on the other hand, is bound to a specific callback name, and
all functions bound to a name are executed when the correspond-
ing callback is issued. Actions provide an additional level of in-
direction, where a mapping is created first between an event and
the action name, and then between the action name and the action
procedure.

In addition to these three, X has a number of other mechanisms
that can be broadly classified as event handling, namely timeouts,
signal handlers, and input handlers. Each of these mechanisms
allows the program to specify a procedure to be called when a given
condition occurs. For all these handler types, X provides operations
for registering the handlers and activating them.

3. OPTIMIZATION APPROACH
Compiler optimizations are based on being able to statically pre-

dict aspects of a program’s runtime behavior using either invariants
that always hold at runtime (i.e., based on dataflow analysis) or as-
sertions that are likely to hold (i.e., based on execution profiles).
Event-based systems, in contrast, are largely unpredictable in their
runtime behavior due to the uncertainties associated with the be-

Device Drivers

X!Protocol

X!Server

Devices

Toolkit

X!Client Application

XLib
QtXt

Figure 3: Architecture of X Window systems

108

Top API

Bottom API

. . .

EventsMicro!protocols

. . .
keyMiss

msgFromBelow

openSession

DESPrivacy

RSAAuthenticity

ClientKeyDistribution

KeyedMD5Integrity

msgFromAbove

Figure 2: Cactus composite protocol

bound to the event at that time results in a correct transformation.
Similarly, it is easy to see that sequences of nested synchronous ac-
tivations can be readily optimized. The specific optimization tech-
niques and their limitations are discussed below in section 3.

2.3 Example Systems
Cactus. Cactus is a system and a framework for constructing

configurable protocols and services, where each service property
or functional component is implemented as a separate module [10].
As illustrated in figure 2, a service in Cactus is implemented as a
composite protocol, with each service property or other functional
component implemented as a micro-protocol. A customized in-
stance of the composite protocol is constructed simply by choosing
the appropriate set of micro-protocols. A micro-protocol is struc-
tured as a collection of event handlers that correspond to the han-
dlers in our general event-based model. A typical micro-protocol
consists of two or more event handlers. Events in Cactus are user-
defined. A typical composite protocol uses 10-20 different events
consisting of a few external events caused by interactions with soft-
ware outside the composite protocol and numerous internal events
used to structure the internal processing of a message or service
request. Each event typically has multiple event handlers. As a re-
sult, Cactus composite protocols often have long chains of events
and event handlers activated by one event. Section 4 gives concrete
examples of events used in a Cactus composite protocol.

The Cactus runtime system provides a variety of operations for
managing events and event handlers. In particular, operations are
provided for binding an event handler to a specified event (bind)
and for activating an event (raise). Event handler binding is com-
pletely dynamic. Events can be raised either synchronously or
asynchronously, and an event can also be raised with a specified
delay to implement time-driven execution. The order of event han-
dler execution can be specified if desired. Arguments can be passed
to handlers in both the bind and raise operations. Other operations
are available for unbinding handlers, creating and deleting events,
halting event execution, and canceling a delayed event. Handler
execution is atomic with respect to concurrency, i.e., a handler is
executed to completion before any other handler is started unless it
voluntarily yields the CPU. Cactus does not directly support com-
plex events, but such events can be implemented by defining a new
event and having a micro-protocol raise this event when the condi-
tions for the complex event are satisfied.

The X Window system. X is a popular GUI framework for Unix
systems. The standard architecture of an X based system is shown

in figure 3. The X server is a program that runs on each system
supporting a graphics display and is responsible for managing de-
vice drivers. Application programs, also called X clients, may be
local or remote to the display system. X servers and X clients use
the X-protocol for communication. X clients are typically built on
the Xlib libraries using toolkits such as Xt, GTK, or Qt. X clients
are implemented as a collection of widgets, which are the basic
building blocks of X applications.

An X event is defined as “a packet of data sent by the server to
the client in response to user behavior or to window system changes
resulting from interactions between windows” [18]. Examples of
X events include mouse motion, focus change, and button press.
These events are recognized through device drivers and relayed to
the X server, which in turn conveys them to X clients. The Xlib
framework specifies 33 basic events. X clients may choose to re-
spond to any of these based on event masks that are specified at
bind time. Events are also used for communication between wid-
gets. Events can arrive in any order and are queued by the X client.
Event activation in X is similar to synchronous activation in the
general model.

The X architecture has three mechanisms for handling events:
event handlers, callback functions, and action procedures. All these
map to handlers in the general model and are used to specify differ-
ent granularities of control. Event handlers, the most primitive, are
simply procedures bound to event names. Callback functions and
action procedures are more commonly used high-level abstractions.
One difference between the three mechanisms relates to scope—
actions have global scope in an X client, while the scope of event
handlers and callbacks is restricted to the widget in which they are
defined. Another difference is their execution semantics. An event
handler can be bound to multiple events in such a way that it is ex-
ecuted when any of the associated events occur. A callback func-
tion, on the other hand, is bound to a specific callback name, and
all functions bound to a name are executed when the correspond-
ing callback is issued. Actions provide an additional level of in-
direction, where a mapping is created first between an event and
the action name, and then between the action name and the action
procedure.

In addition to these three, X has a number of other mechanisms
that can be broadly classified as event handling, namely timeouts,
signal handlers, and input handlers. Each of these mechanisms
allows the program to specify a procedure to be called when a given
condition occurs. For all these handler types, X provides operations
for registering the handlers and activating them.

3. OPTIMIZATION APPROACH
Compiler optimizations are based on being able to statically pre-

dict aspects of a program’s runtime behavior using either invariants
that always hold at runtime (i.e., based on dataflow analysis) or as-
sertions that are likely to hold (i.e., based on execution profiles).
Event-based systems, in contrast, are largely unpredictable in their
runtime behavior due to the uncertainties associated with the be-

Device Drivers

X!Protocol

X!Server

Devices

Toolkit

X!Client Application

XLib
QtXt

Figure 3: Architecture of X Window systems

108

52010年5月17日月曜日

Approach

Event Profiling

Optimization Techniques

Graph Optimizations

Compiler Optimizations

Dealing with the Unexpected

62010年5月17日月曜日

Event Profiling

EventGraph = ;
prev event = eventTrace firstEvent;
while not (end of eventTrace)

event = eventTrace nextEvent;
if (prev event,event) not in EventGraph

EventGraph += (prev event,event);
EventGraph(prev event,event) weight = 1;

else
eventGraph(prev event,event) weight++;

prev event = event;

Figure 4: GraphBuilder algorithm.

havior of their external environment, e.g., the user’s actions. We
have found, however, that in practice, there is a significant amount
of predictability in their internal behavior that can be exploited for
optimization purposes. This predictability occurs at two levels. At
the event level, certain sequences of events occur in all (or most)
system executions. At the handler level, there is often more than
one handler bound to a specific event, and all these handlers are ex-
ecuted in sequence each time the event occurs. Handlers are gener-
ally developed to work as independently as possible, and the over-
all execution flow is determined by bindings performed at runtime.
The use of runtime binding also means that the program’s behavior
can be changed dynamically by changing the event/handler config-
uration from within the program.

Event and handler profiling are used to identify predictable as-
pects of an event-based program’s behavior. This section describes
these techniques and the optimizations performed based on the re-
sults.

3.1 Event Profiling
We identify static optimization opportunities in an event-based

program using event and handler execution profiles. Profiling is
used instead of static approaches such as code and registry data
structure analysis since, as noted above, binding information is gen-
erally available only at runtime and may in fact change during ex-
ecution. We first identify commonly occurring event sequences by
instrumenting the event system to log an entry each time an event
occurs, indicating the event being raised and whether it is being
raised synchronously or asynchronously. We then use the resulting
event profiles to identify frequently invoked event handlers, add in-
strumentation code to each such handler, and log entries each time
the handler is invoked, thereby obtaining handler profiles. Profil-
ing is done for one program—and for configurable programs, one
program configuration—at a time. At present, the event framework
is instrumented by hand, but this can easily be automated using
well-understood techniques [3]. The analysis and optimizations are
currently performed manually off-line after the program to be op-
timized has been executed enough times to develop an adequate
profile. On-line analysis and optimization, as well as automation,
are potential extensions to this work and are discussed in section 5.

The profiling algorithm takes the event trace generated by the
instrumented event framework and constructs an event graph that
summarizes the event sequences in the trace. There is an edge from
node to node in the graph if event is ever followed immedi-
ately by event in the trace. Each edge has an associated
weight indicating how many times the sequence appeared
in the trace. The algorithm used to generate the event graph is pre-
sented in figure 4. Note that in the event trace, if an event is fol-
lowed immediately by an event that was raised synchronously,
then we can infer that execution of follows sequentially. How-
ever, if was raised asynchronously, then the fact that it follows

86
391

87

479

8

26

2

1

1 2 86

40

1

1

1

38 47

391

 Sample

42

ControllerFired

SegmentTimeout

1

31

1

1

1

42

87

1

1

160 1

1

MsgFrmUserH

ControllerClkH

ResizeFragment

Adapt

393

552

1

Seg2Net

391

392
MsgFrmUserL

SegFromUser

SegmentAcked
391

Synchronously Activated Events

Asynchronously Activated Events

Key:

317

1

310

1

Controller

Open
AddSysInput

SendMsg
ControllerFiring

SegmentSent

1
ControllerClkL

Figure 5: Event graph generated from video player

in the event trace may not indicate causality, i.e., we cannot con-
clude that had any role in raising . For example, may be the
result of a timeout from an earlier event completely unrelated to .

The event graph is used as the starting point for the analysis that
identifies predictable event and handler sequences. The first step
is to use the edge weights to identify commonly occurring event
sequences; while this mapping is not exact and more sophisticated
techniques could be applied, we have found this approach to be
sufficient in practice. Given an event graph and a threshold ,
an event path of weight is defined to be a path in in which no
edge has weight less than . To simplify the algorithm, we first
discard from the event graph edges whose weights are below the
threshold ; this produces a reduced event graph from which event
paths are extracted. Each event path indicates a frequent sequence
of events and hence represents a candidate for optimization. The
remainder of this discussion focuses on event paths unless other-
wise mentioned. Note that the event paths so constructed are not
quite the same as hot path profiles. Path profiling at the level of
events is not used since path profiles tend to be large and expen-
sive to compute [13, 25], and since experimental results using the
approach described above suggest that it is adequate for the opti-
mizations implemented.

The next step is to perform handler level profiling to identify pre-
dictable sequences of handler activations. This profiling is needed
for two reasons. First, an event may have multiple handlers that are
executed in sequence each time the event occurs. Second, because
of the decoupling between events and their handlers, knowing the
events that occur does not by itself tell us about the handlers that
are activated. The event paths in the event graph are used to identify
the most promising events for handler level profiling. The handlers
for the nodes in each event path are instrumented and an entry is
logged each time the handler is invoked. Based on this trace, an-
other graph called the handler graph is constructed to use as the
basis for optimization. The profiling and graph construction for
handlers is carried out in the same way as before.

109

72010年5月17日月曜日

EventGraph = ;
prev event = eventTrace firstEvent;
while not (end of eventTrace)

event = eventTrace nextEvent;
if (prev event,event) not in EventGraph

EventGraph += (prev event,event);
EventGraph(prev event,event) weight = 1;

else
eventGraph(prev event,event) weight++;

prev event = event;

Figure 4: GraphBuilder algorithm.

havior of their external environment, e.g., the user’s actions. We
have found, however, that in practice, there is a significant amount
of predictability in their internal behavior that can be exploited for
optimization purposes. This predictability occurs at two levels. At
the event level, certain sequences of events occur in all (or most)
system executions. At the handler level, there is often more than
one handler bound to a specific event, and all these handlers are ex-
ecuted in sequence each time the event occurs. Handlers are gener-
ally developed to work as independently as possible, and the over-
all execution flow is determined by bindings performed at runtime.
The use of runtime binding also means that the program’s behavior
can be changed dynamically by changing the event/handler config-
uration from within the program.

Event and handler profiling are used to identify predictable as-
pects of an event-based program’s behavior. This section describes
these techniques and the optimizations performed based on the re-
sults.

3.1 Event Profiling
We identify static optimization opportunities in an event-based

program using event and handler execution profiles. Profiling is
used instead of static approaches such as code and registry data
structure analysis since, as noted above, binding information is gen-
erally available only at runtime and may in fact change during ex-
ecution. We first identify commonly occurring event sequences by
instrumenting the event system to log an entry each time an event
occurs, indicating the event being raised and whether it is being
raised synchronously or asynchronously. We then use the resulting
event profiles to identify frequently invoked event handlers, add in-
strumentation code to each such handler, and log entries each time
the handler is invoked, thereby obtaining handler profiles. Profil-
ing is done for one program—and for configurable programs, one
program configuration—at a time. At present, the event framework
is instrumented by hand, but this can easily be automated using
well-understood techniques [3]. The analysis and optimizations are
currently performed manually off-line after the program to be op-
timized has been executed enough times to develop an adequate
profile. On-line analysis and optimization, as well as automation,
are potential extensions to this work and are discussed in section 5.

The profiling algorithm takes the event trace generated by the
instrumented event framework and constructs an event graph that
summarizes the event sequences in the trace. There is an edge from
node to node in the graph if event is ever followed immedi-
ately by event in the trace. Each edge has an associated
weight indicating how many times the sequence appeared
in the trace. The algorithm used to generate the event graph is pre-
sented in figure 4. Note that in the event trace, if an event is fol-
lowed immediately by an event that was raised synchronously,
then we can infer that execution of follows sequentially. How-
ever, if was raised asynchronously, then the fact that it follows

86
391

87

479

8

26

2

1

1 2 86

40

1

1

1

38 47

391

 Sample

42

ControllerFired

SegmentTimeout

1

31

1

1

1

42

87

1

1

160 1

1

MsgFrmUserH

ControllerClkH

ResizeFragment

Adapt

393

552

1

Seg2Net

391

392
MsgFrmUserL

SegFromUser

SegmentAcked
391

Synchronously Activated Events

Asynchronously Activated Events

Key:

317

1

310

1

Controller

Open
AddSysInput

SendMsg
ControllerFiring

SegmentSent

1
ControllerClkL

Figure 5: Event graph generated from video player

in the event trace may not indicate causality, i.e., we cannot con-
clude that had any role in raising . For example, may be the
result of a timeout from an earlier event completely unrelated to .

The event graph is used as the starting point for the analysis that
identifies predictable event and handler sequences. The first step
is to use the edge weights to identify commonly occurring event
sequences; while this mapping is not exact and more sophisticated
techniques could be applied, we have found this approach to be
sufficient in practice. Given an event graph and a threshold ,
an event path of weight is defined to be a path in in which no
edge has weight less than . To simplify the algorithm, we first
discard from the event graph edges whose weights are below the
threshold ; this produces a reduced event graph from which event
paths are extracted. Each event path indicates a frequent sequence
of events and hence represents a candidate for optimization. The
remainder of this discussion focuses on event paths unless other-
wise mentioned. Note that the event paths so constructed are not
quite the same as hot path profiles. Path profiling at the level of
events is not used since path profiles tend to be large and expen-
sive to compute [13, 25], and since experimental results using the
approach described above suggest that it is adequate for the opti-
mizations implemented.

The next step is to perform handler level profiling to identify pre-
dictable sequences of handler activations. This profiling is needed
for two reasons. First, an event may have multiple handlers that are
executed in sequence each time the event occurs. Second, because
of the decoupling between events and their handlers, knowing the
events that occur does not by itself tell us about the handlers that
are activated. The event paths in the event graph are used to identify
the most promising events for handler level profiling. The handlers
for the nodes in each event path are instrumented and an entry is
logged each time the handler is invoked. Based on this trace, an-
other graph called the handler graph is constructed to use as the
basis for optimization. The profiling and graph construction for
handlers is carried out in the same way as before.

109

82010年5月17日月曜日

Graph Optimizations(1)

Threshold = 300552

 317 391

479

393

SegFromUser

310

Seg2Net

Controller Adapt

ControllerFiring

ControllerFired

392

392

391 391

MsgFromUserL MsgFromUserH

ControllerClkH ControllerClkL

Figure 6: Reduced event graph

Figure 5 shows the event graph for a video player application im-
plemented on top of a configurable transport protocol called CTP
built using Cactus [24]; the bold edges are discussed below in sec-
tion 3.2.1, while details of the application are given in section 4.2.
Figure 6 shows the corresponding reduced event graph for

.

3.2 Optimization Techniques
Once the most frequent event and handler sequences have been

identified, the optimizations are performed based on the handler
graph. The goal is to eliminate:

Marshalling overheads for event activations.

Indirect function call and variable argument passing costs.

State maintenance (synchronization and locking) costs for
global variables.

Redundant initializations and code fragments for events with
multiple handlers.

For synchronous events, we also expect to observe event se-
quences that can be chained together. In addition, elimination of
indirect function calls increases the potential for value-based op-
timizations such as constant propagation. Another option that has
been explored is inlining code for raising popular events. All these
optimizations can be classified broadly as either graph or compiler
optimizations. This section describes each type in turn.

3.2.1 Graph Optimizations
Graph optimizations try to reduce the costs associated with in-

teractions between events and handlers in the program by reducing
the number of handler activations along common event paths. This
is done by reducing the number of nodes in an event graph and
generating simpler collapsed graphs, as well as by merging handler
nodes to create super-handlers for events and chains. Of course,
correctness of these transformations is an important requirement;
this issue is discussed in the next section.

HandlerMerging. In the case of events with multiple handlers, the
handler graph shows a sequence of contiguous nodes. The event
system is responsible for issuing calls to all handlers bound to the
event. References to handlers are stored as function pointers in a
list associated with the event, and each raise operation for the event

Events Handlers

{

}
H1_code

Handler Merging

{

}

Event A
Events Handlers

H3_code

H1_code
H2_code

Handler1 Handler2 Handler3
{

H3_code
}

H2_code
{

}

Handler123

Event A

Figure 7: Handler merging

translates into a sequence of indirect function calls. There are two
sources of overhead here: the cost of an indirect call, and—since
in general the identities and the number of arguments taken by the
handlers for an event are not statically known—a cost associated
with argument marshaling and unmarshaling. However, we can use
the handler graph obtained from our handler profiling to identify
the sequence of handlers activated when an event is raised. Given
this information, a simple approach for dealing with this overhead
is to merge all the handlers associated with an event into a single
large handler. In the handler graph, this corresponds to collapsing
all handler nodes for a given event into a single super-handler node.
The immediate savings from this transformation is the reduction in
the number of indirect function calls. Figure 7 shows the effect of
this optimization. Further savings then result from the application
of standard compiler optimizations, such as common subexpression
elimination and dead-code elimination on the super-handler code.

An important point to note in this context is that some event sys-
tems such as Cactus allow event bindings to change dynamically.
We need to account for such changes and ensure that correctness is
preserved even if they do occur. This is done by checking whether
any changes have been made to the list of handlers bound to an
event when it is raised, and then dropping back into the original
unoptimized code if a change is detected. See section 3.3 for more
details.

Raise operations are typically generic in the sense that they can
raise an arbitrary event. Because of this, they incur overheads
due to argument marshaling, indirect invocation of handlers, and
state maintenance. The number of activations—and hence their to-
tal cost—can be reduced using super-handlers, as discussed above.
However, super-handlers are still invoked indirectly and so incur
some residual cost. These costs can be reduced by replacing the
raise operation with a direct call to the super-handler based on pro-
file information. This in turn opens up the possibility of inlining
the function call into the call site, as discussed below.

Event Chains and Subsumption. The unpredictable nature of
events may suggest that different events are largely independent of
one another. However, our experiments indicate that there are often
significant correlations between different events of the form “Event
B always follows Event A.” This leads to commonly occurring se-
quences of events, which we term event chains, that are candidates
for optimization. An event chain is defined to be a path in the event

110

Handler Merging

92010年5月17日月曜日

Graph Optimizations(2)

Threshold = 300552

 317 391

479

393

SegFromUser

310

Seg2Net

Controller Adapt

ControllerFiring

ControllerFired

392

392

391 391

MsgFromUserL MsgFromUserH

ControllerClkH ControllerClkL

Figure 6: Reduced event graph

Figure 5 shows the event graph for a video player application im-
plemented on top of a configurable transport protocol called CTP
built using Cactus [24]; the bold edges are discussed below in sec-
tion 3.2.1, while details of the application are given in section 4.2.
Figure 6 shows the corresponding reduced event graph for

.

3.2 Optimization Techniques
Once the most frequent event and handler sequences have been

identified, the optimizations are performed based on the handler
graph. The goal is to eliminate:

Marshalling overheads for event activations.

Indirect function call and variable argument passing costs.

State maintenance (synchronization and locking) costs for
global variables.

Redundant initializations and code fragments for events with
multiple handlers.

For synchronous events, we also expect to observe event se-
quences that can be chained together. In addition, elimination of
indirect function calls increases the potential for value-based op-
timizations such as constant propagation. Another option that has
been explored is inlining code for raising popular events. All these
optimizations can be classified broadly as either graph or compiler
optimizations. This section describes each type in turn.

3.2.1 Graph Optimizations
Graph optimizations try to reduce the costs associated with in-

teractions between events and handlers in the program by reducing
the number of handler activations along common event paths. This
is done by reducing the number of nodes in an event graph and
generating simpler collapsed graphs, as well as by merging handler
nodes to create super-handlers for events and chains. Of course,
correctness of these transformations is an important requirement;
this issue is discussed in the next section.

HandlerMerging. In the case of events with multiple handlers, the
handler graph shows a sequence of contiguous nodes. The event
system is responsible for issuing calls to all handlers bound to the
event. References to handlers are stored as function pointers in a
list associated with the event, and each raise operation for the event

Events Handlers

{

}
H1_code

Handler Merging

{

}

Event A
Events Handlers

H3_code

H1_code
H2_code

Handler1 Handler2 Handler3
{

H3_code
}

H2_code
{

}

Handler123

Event A

Figure 7: Handler merging

translates into a sequence of indirect function calls. There are two
sources of overhead here: the cost of an indirect call, and—since
in general the identities and the number of arguments taken by the
handlers for an event are not statically known—a cost associated
with argument marshaling and unmarshaling. However, we can use
the handler graph obtained from our handler profiling to identify
the sequence of handlers activated when an event is raised. Given
this information, a simple approach for dealing with this overhead
is to merge all the handlers associated with an event into a single
large handler. In the handler graph, this corresponds to collapsing
all handler nodes for a given event into a single super-handler node.
The immediate savings from this transformation is the reduction in
the number of indirect function calls. Figure 7 shows the effect of
this optimization. Further savings then result from the application
of standard compiler optimizations, such as common subexpression
elimination and dead-code elimination on the super-handler code.

An important point to note in this context is that some event sys-
tems such as Cactus allow event bindings to change dynamically.
We need to account for such changes and ensure that correctness is
preserved even if they do occur. This is done by checking whether
any changes have been made to the list of handlers bound to an
event when it is raised, and then dropping back into the original
unoptimized code if a change is detected. See section 3.3 for more
details.

Raise operations are typically generic in the sense that they can
raise an arbitrary event. Because of this, they incur overheads
due to argument marshaling, indirect invocation of handlers, and
state maintenance. The number of activations—and hence their to-
tal cost—can be reduced using super-handlers, as discussed above.
However, super-handlers are still invoked indirectly and so incur
some residual cost. These costs can be reduced by replacing the
raise operation with a direct call to the super-handler based on pro-
file information. This in turn opens up the possibility of inlining
the function call into the call site, as discussed below.

Event Chains and Subsumption. The unpredictable nature of
events may suggest that different events are largely independent of
one another. However, our experiments indicate that there are often
significant correlations between different events of the form “Event
B always follows Event A.” This leads to commonly occurring se-
quences of events, which we term event chains, that are candidates
for optimization. An event chain is defined to be a path in the event

110

Event Chains and Subsumption

graph

satisfying the following:

each vertex in the chain (except possibly for the last ver-
tex,) has exactly one successor edge corresponding to a
synchronous event activation; and

the edge corresponds to a synchronous event ac-
tivation.

Graph edges corresponding to asynchronous raises are not included
since as mentioned above, if an event is followed by an asyn-
chronously raised event , it cannot be inferred that necessarily
raised .

The intuition behind event chains is that they denote sequences
of event activations that are guaranteed to occur if the event at the
head of the chain occurs. Such chains can arise due to two reasons.
One is that the configuration of the event-based program may be
such that a particular set of events is raised in sequence under the
appropriate circumstances. The other is that the handlers of one
event may (synchronously) raise other events. Two examples of
event chains are shown in figure 5 as sequences of bold edges.

Event chains are optimized in two ways. First, the notion of
handler merging (section 3.2.1) is generalized to span event bound-
aries. The effect is to combine all the handlers for all the events
in the chain into a single handler, which avoids the runtime cost of
multiple handler invocations. Second, even if this is not possible
(see below), the handlers for events later in the chain can be op-
timized using the knowledge that handlers for earlier events have
been executed. This may allow us to eliminate some redundant
work across handlers.

Inter-event handler merging is not carried out if any of the activa-
tions in an event chain is asynchronous (or as a special case, timed;
see section 2.2). This is necessary to preserve the observable be-
havior of the system with respect to timing semantics. For example,
suppose that an event signifying “data transfer initiated” is al-
ways followed by an event signifying “data transfer completed,”
but that occurs (at least) some fixed time after . In this case,
is raised asynchronously, and so is not subjected to handler merg-
ing. Note that this also maintains the threading semantics of the
system. That is, with synchronously activated events, the activator
thread services all its handlers, whereas with asynchronously acti-
vated events this may not be the case. Not optimizing events that
are raised asynchronously maintains this behavior. It should be
noted that even though handler merging is not carried out in such
cases, the event chains can still be optimized to some extent based
on knowledge about the context in which later events can be raised.
For instance, when event in this example is raised, the event
must have been raised and handled previously.

An important special case of event chain optimization is when
the handlers bound to one event raise other events synchronously.
This leads to event chains where handlers for an event may be
embedded in the handlers for the parent event . An example of
this is found in the video player example shown in figure 5 and is il-
lustrated in figure 8. The focus is on two distinct events from figure
5, SegFromUser and Seg2Net; the former is shown unshaded,
the latter is shaded gray. The relevant portion of the corresponding
handler graph is shown at the right of figure 8, with handlers exe-
cuted based on the actions of SegFromUser shown unshaded and
those executed based on Seg2Net shown shaded. The proper nest-
ing of the shaded handler sequence within the unshaded sequence
indicates that Seg2Net is raised synchronously by the handlers of
SegFromUser. In other words, if the event Seg2Net is raised

Handler Graph View

FEC SFU1

SeqSegSFU

TDriver SFU

PAU S2N

TD S2N

FEC SFU2

FEC S2N

WFC S2N

Event Graph

Seg2Net

SegFromUser

Figure 8: Subsuming events

from within a handler for SegFromUser, the latter will wait un-
til the handling of Seg2Net has been completed, at which point
control will return to the handler for SegFromUser. In this case,
the handler for Seg2Net can be subsumed into that for SegFro-
mUser, thereby eliminating the synchronous event raise between
them.

Figure 9 illustrates the effects of subsumption for the events in
figure 8. SegFromUser and Seg2Net each have four handlers in
this case: FEC-SFU1, SeqSegSFU, TDriver-SFU, and FEC-
SFU2 for SegFromUser, and PAU-S2N, WFC-S2N, FEC-S2N,
and TD-S2N for Seg2Net. TDriver-SFU synchronously raises
the event Seg2Net, which causes execution of its handlers. Af-
ter completion, control returns to handling SegFromUser and
causes the last handler, FEC-SFU2, to be executed. Without sub-
sumption, the best that could be done would be to merge the han-
dlers for SegFromUser to create a super-handler, and similarly
for Seg2Net. This would still incur the overhead of an event raise
of Seg2Net from TDriver-SFU. However, the synchronous na-
ture of this activation allows this code to be optimized so that the
raise of Seg2Net within the super-handler for SegFromUser is
replaced by the handler code for Seg2Net. This is illustrated in
figure 9.

FEC2SegFromUser

Events Handlers

PAU WFC FEC TD

Seg2Net

FEC SeqSeg TDriver

Subsumption

SegFromUser

Events Handlers

Seg2Net
PAU
WFC
FEC
TD

FEC2
TD
FEC
WFC
PAU

FEC
SeqSeg
TDriver

Figure 9: Effect of subsuming events

3.2.2 Compiler Optimizations
The super-handlers resulting from graph optimization have the

effect of bringing together code that was scattered across the pro-
gram over a number of different handler routines prior to optimiza-
tion. As a result, they become amenable to further improvement

111

102010年5月17日月曜日

Compiler Optimizations

Function Inlining

定数伝播と不要命令の除去

Redundant Code Elimination

112010年5月17日月曜日

Experiment Results

Total Execution Time (sec) Event Handler Time (sec)
Frame rate Orig. () Opt. () (%) Orig. () Opt. () (%)

10 43.1 41.9 97.2 2.3 0.9 39.1
15 30.9 30.3 98.0 1.6 0.6 37.5
20 24.5 22.1 90.2 1.5 0.5 33.3
25 23.9 21.3 89.1 1.5 0.5 33.3

Key: Orig: Original program; Opt: Optimized program

Figure 10: Video player optimization results.

Event Processing Time (sec) Speedup
Original Optimized ()

Adapt 55 11 80.0
SegFromUser 346 41 88.2
Seg2Net 137 37 73.0

Figure 11: Event processing times in the video player.

optimization on overall execution time becomes more pronounced
as the frame rate increases is that when the frame rate is low, the
CPU is idle a large part of the time. As a result, the unoptimized
program can simply use a bit more of the idle time to keep up with
the required frame rate. However, when the frame rate increases,
both programs must do more work in a time unit and the idle time
decreases. When the frame rate becomes high enough, the unopti-
mized program runs out of extra idle time and starts falling behind
the optimized program. This indicates that our optimizations are
especially effective for mobile systems such as handheld PDAs that
tend to have less powerful processors than desktop systems.
SecComm is a configurable secure communication service that

allows the customization of security attributes for a communica-
tion connection, including privacy, authenticity, integrity, and non-
repudiation. One of the features of SecComm is its support for
implementing a security property using combinations of basic se-
curity micro-protocols. We optimized a configuration of SecComm
with three micro-protocols, two of which encrypt the message body
(DES and a trivial XOR with a key) and the third that coordinates
the execution of the other two. SecComm is a much simpler com-
posite protocol than CTP and the video player, and the event behav-
ior in this particular SecComm configuration turns out to be quite
predictable. In particular, there is one event chain on the sender
and one chain on the receiver. The majority of the execution time
in SecComm is spent in the cryptographic encryption and decryp-
tion routines. The SecComm measurements were performed on the
desktops, as follows: first a dummy message was sent to initial-
ize the micro-protocols, after which a message was sent 100 times.
This was repeated for different packet sizes, for a total of 1000 mes-
sages per packet size. The time reported in each case is the average
of the run times so obtained.
Figure 12 shows the amount of time spent in the push and pop

portions of SecComm before and after optimization. The push
portion encompasses the message processing from the time it is
passed to SecComm by the application until it is passed to the UDP
socket. The pop portion encompasses the message processing from
the time it is received from the socket until SecComm passes it to
the higher layer (the application). The push portion includes the
time taken by the encryption operations, whereas the pop portion
includes the decryption time. The time taken depends on the size
of message packets, which is reflected in the results. It can be seen

that the time for the push portion is reduced markedly in most cases,
with improvements of up to 13.3%. The improvements in the pop
portion are also noticeable although not as high as for the push por-
tion, typically around 5% but going as high as 12%.
An examination of the effects of our optimizations on these two

programs indicates two main sources of benefits: the reduction of
argument marshaling overhead when invoking event handlers, and
handler merging that leads to a reduction in the number of han-
dler invocations. The elimination of marshaling overhead seems to
have the largest effect on the overall performance improvements
achieved. The main effect of handler merging is to reduce the
number of function calls between handlers that are executed in se-
quence. Merging also creates opportunities for additional code im-
provements due to standard compiler optimizations.
Code in event handlers is usually a small fraction of the total

program size. To measure the effects of our optimization on code
size, we counted the number of instructions in the original and op-
timized programs using the command objdump -d program |
wc -l. Our optimizations produce a code size increase of 1.3%
for the video player and 1.1% for SecComm.

4.3 X clients
X clients tend to be user driven, spending much of their time in

the event loop waiting for user input. Hence, our focus in the case
of these programs is to improve the event response time, i.e., the
time taken to handle an event. Common applications like gvim ex-
hibit several examples of multiple handlers binding to single events
and hence are good candidates for applying such optimizations.
This section is indicative of the potential of our techniques.
We evaluated our ideas on the xterm application provided with

XFree86 and gvim. The effects of our optimizations on these pro-
grams running on the laptop are shown in figure 13. These numbers
were obtained by raising the events 250 times.
Popup represents the Menu Popup that is triggered by CTRL +

MOUSE BUTTON in an xterm window. When handling this event,
two action handlers are triggered in sequence. The first initializes
the menu object. This procedure is specific to the type of GUI
toolkit and in our case uses the SimpleMenu widget in the Athena
Toolkit. The next action handler is responsible for constructing and
displaying the menu. This action handler in turn invokes two call-
backs to track mouse motion within the menu. Our optimizations
merge these two action handlers as described above. The Scroll
event corresponds to motion of the scrollbar in a gvim window.
Handling this event also involves two action handlers that move the
thumb1 and update the new position. The first action handler uses
the underlying framework to get the co-ordinates of the thumb. The
second is responsible for displaying the new position of the thumb
on the screen. Both these action handlers invoke callbacks tied to
corresponding widgets.
It can be seen that the optimizations reduce the cost of Scroll by

“Thumb” here refers to a portion of the scrollbar.

113

Total Execution Time (sec) Event Handler Time (sec)
Frame rate Orig. () Opt. () (%) Orig. () Opt. () (%)

10 43.1 41.9 97.2 2.3 0.9 39.1
15 30.9 30.3 98.0 1.6 0.6 37.5
20 24.5 22.1 90.2 1.5 0.5 33.3
25 23.9 21.3 89.1 1.5 0.5 33.3

Key: Orig: Original program; Opt: Optimized program

Figure 10: Video player optimization results.

Event Processing Time (sec) Speedup
Original Optimized ()

Adapt 55 11 80.0
SegFromUser 346 41 88.2
Seg2Net 137 37 73.0

Figure 11: Event processing times in the video player.

optimization on overall execution time becomes more pronounced
as the frame rate increases is that when the frame rate is low, the
CPU is idle a large part of the time. As a result, the unoptimized
program can simply use a bit more of the idle time to keep up with
the required frame rate. However, when the frame rate increases,
both programs must do more work in a time unit and the idle time
decreases. When the frame rate becomes high enough, the unopti-
mized program runs out of extra idle time and starts falling behind
the optimized program. This indicates that our optimizations are
especially effective for mobile systems such as handheld PDAs that
tend to have less powerful processors than desktop systems.
SecComm is a configurable secure communication service that

allows the customization of security attributes for a communica-
tion connection, including privacy, authenticity, integrity, and non-
repudiation. One of the features of SecComm is its support for
implementing a security property using combinations of basic se-
curity micro-protocols. We optimized a configuration of SecComm
with three micro-protocols, two of which encrypt the message body
(DES and a trivial XOR with a key) and the third that coordinates
the execution of the other two. SecComm is a much simpler com-
posite protocol than CTP and the video player, and the event behav-
ior in this particular SecComm configuration turns out to be quite
predictable. In particular, there is one event chain on the sender
and one chain on the receiver. The majority of the execution time
in SecComm is spent in the cryptographic encryption and decryp-
tion routines. The SecComm measurements were performed on the
desktops, as follows: first a dummy message was sent to initial-
ize the micro-protocols, after which a message was sent 100 times.
This was repeated for different packet sizes, for a total of 1000 mes-
sages per packet size. The time reported in each case is the average
of the run times so obtained.
Figure 12 shows the amount of time spent in the push and pop

portions of SecComm before and after optimization. The push
portion encompasses the message processing from the time it is
passed to SecComm by the application until it is passed to the UDP
socket. The pop portion encompasses the message processing from
the time it is received from the socket until SecComm passes it to
the higher layer (the application). The push portion includes the
time taken by the encryption operations, whereas the pop portion
includes the decryption time. The time taken depends on the size
of message packets, which is reflected in the results. It can be seen

that the time for the push portion is reduced markedly in most cases,
with improvements of up to 13.3%. The improvements in the pop
portion are also noticeable although not as high as for the push por-
tion, typically around 5% but going as high as 12%.
An examination of the effects of our optimizations on these two

programs indicates two main sources of benefits: the reduction of
argument marshaling overhead when invoking event handlers, and
handler merging that leads to a reduction in the number of han-
dler invocations. The elimination of marshaling overhead seems to
have the largest effect on the overall performance improvements
achieved. The main effect of handler merging is to reduce the
number of function calls between handlers that are executed in se-
quence. Merging also creates opportunities for additional code im-
provements due to standard compiler optimizations.
Code in event handlers is usually a small fraction of the total

program size. To measure the effects of our optimization on code
size, we counted the number of instructions in the original and op-
timized programs using the command objdump -d program |
wc -l. Our optimizations produce a code size increase of 1.3%
for the video player and 1.1% for SecComm.

4.3 X clients
X clients tend to be user driven, spending much of their time in

the event loop waiting for user input. Hence, our focus in the case
of these programs is to improve the event response time, i.e., the
time taken to handle an event. Common applications like gvim ex-
hibit several examples of multiple handlers binding to single events
and hence are good candidates for applying such optimizations.
This section is indicative of the potential of our techniques.
We evaluated our ideas on the xterm application provided with

XFree86 and gvim. The effects of our optimizations on these pro-
grams running on the laptop are shown in figure 13. These numbers
were obtained by raising the events 250 times.
Popup represents the Menu Popup that is triggered by CTRL +

MOUSE BUTTON in an xterm window. When handling this event,
two action handlers are triggered in sequence. The first initializes
the menu object. This procedure is specific to the type of GUI
toolkit and in our case uses the SimpleMenu widget in the Athena
Toolkit. The next action handler is responsible for constructing and
displaying the menu. This action handler in turn invokes two call-
backs to track mouse motion within the menu. Our optimizations
merge these two action handlers as described above. The Scroll
event corresponds to motion of the scrollbar in a gvim window.
Handling this event also involves two action handlers that move the
thumb1 and update the new position. The first action handler uses
the underlying framework to get the co-ordinates of the thumb. The
second is responsible for displaying the new position of the thumb
on the screen. Both these action handlers invoke callbacks tied to
corresponding widgets.
It can be seen that the optimizations reduce the cost of Scroll by

“Thumb” here refers to a portion of the scrollbar.

113

Push time (sec) Pop time (sec)
Size Orig. () Opt. () (%) Orig. () Opt. () (%)
64 274 241 88.0 397 378 95.2
128 287 263 91.6 460 448 97.4
256 304 273 89.8 484 457 94.4
512 336 299 89.0 494 470 95.1
1024 430 373 86.7 608 570 93.8
2048 572 552 96.5 1016 893 87.9

Figure 12: Impact of optimization in SecComm

Event Execution Time (sec)
Type Orig. () Opt. () (%)
Scroll 158 148 93.7
Popup 37 31 83.8

Figure 13: Optimization of X events

about 6% and that of Popup by over 16%. These techniques were
applied here at the level of action handlers, although it would be
possible to optimize one step further by opening up callbacks in
the same way.
These optimizations were performed using the Athena widget

family based on Xt and Xlib provided with XFree86. The Athena
toolkit is a minimal toolkit with limited configurability, and there-
fore provided limited scope for applying our optimizations. The
event model in more recent (and popular) toolkits such as Gnome
GTK and KDE Qt provides functionality such as signals and slots
that is very similar to the Cactus event model. Such functionality
greatly increases the ease of use and development of client appli-
cations, but increases the cost of event handling significantly. Ap-
plication of our optimization techniques to these systems would
reduce these costs and make event handling through signals and
similar mechanisms no more expensive than “ordinary” event han-
dling, while significantly enhancing ease of programming.

5. POSSIBLE EXTENSIONS
A number of extensions to these optimization techniques are pos-

sible. These range from simple extensions and improved automa-
tion, to extensions for dealing with the dynamic aspects of the event
system and with cases where event execution is not quite determin-
istic. An example of a simple extension would be to perform han-
dler merging for all events that have more than one handler rather
than only the events in frequently executed event chains. Improved
automation includes such items as developing toolkits for instru-
menting the code to do profiling and for generating the optimized
code.
As noted, the ability in event-based programs to change execu-

tion behavior dynamically by, for example, altering event bindings
is a challenge for an optimization approach based on identifying
and utilizing predictable behavior. Our current approach is based
on detecting any change in event bindings and falling back to the
original code for any events affected by the change. A better ap-
proach would be to construct the super-handler so that it can be
used even if some of the bindings change. For example, consider a
predictable event sequence (A,B,C,D) that has been optimized into
one super handler (ABCD). If the handlers for B change, the cur-
rent approach falls back to the original code for this entire event
sequence and all of the performance improvement achieved by the

if event binding for event B changed
call(original code for event B);

else
merged, inlined, and optimized code for event B;

Figure 14: Extended super-handler for dynamic system

optimization are lost. Alternatively, we could organize the (ABCD)
super-handler internally so that the code corresponding to different
events is partitioned as illustrated for event B in figure 14. Then,
even if the event binding for event B changes, the optimized version
can still be used for events A, C, and D.
Other techniques could be used to extend the scope of the opti-

mizations beyond just predictable event chains. For instance, once
all event chains have been optimized, the result is a reduced graph
with no event chains. This reduced graph can be optimized further
using a speculative approach. In this scheme, if event A is followed
by B 90% of the time and C 10% of the time, free cycles during the
execution of A’s handlers can be used to initialize the execution of
B’s handlers. Value-based optimization as suggested in [17] can
also be extended to increase the accuracy of prediction. Another
strategy would be to perform minimal processing for A and defer
the bulk of handling A until the next event occurs. If the next event
is B, optimized code for (AB) can then be executed. This type of
deferral would be particularly useful in a situation where event A is
followed by B or C with equal probability. Heavier optimizations
such as dominator / post-dominator analysis can be used to detect
co-relations between events.
Finally, another possible extension is to explore optimizing asyn-

chronously activated events. As noted above, the current optimiza-
tion can only address event paths in which all activations but the
initial one are synchronous. An asynchronous activation by defini-
tion has much looser semantics than a synchronous activation—the
handlers bound to this event must simply be executed some time
after the event has been activated. Although these semantics make
it difficult to create an optimized program that has identical behav-
ior to an unoptimized one, it should be possible to generate one that
executes the events and handlers in an order that is consistent with
the semantics of event operations. In particular, if an asynchronous
activation of an event A is always eventually followed by the acti-
vation of event B, it may be possible to merge the handlers of A and
B in certain cases. We intend to explore program transformations
of this type.

6. RELATEDWORK
Only a small number of papers have addressed compilation ori-

ented optimization of event-based systems. Chambers et al. discuss

114

Push time (sec) Pop time (sec)
Size Orig. () Opt. () (%) Orig. () Opt. () (%)
64 274 241 88.0 397 378 95.2
128 287 263 91.6 460 448 97.4
256 304 273 89.8 484 457 94.4
512 336 299 89.0 494 470 95.1
1024 430 373 86.7 608 570 93.8
2048 572 552 96.5 1016 893 87.9

Figure 12: Impact of optimization in SecComm

Event Execution Time (sec)
Type Orig. () Opt. () (%)
Scroll 158 148 93.7
Popup 37 31 83.8

Figure 13: Optimization of X events

about 6% and that of Popup by over 16%. These techniques were
applied here at the level of action handlers, although it would be
possible to optimize one step further by opening up callbacks in
the same way.
These optimizations were performed using the Athena widget

family based on Xt and Xlib provided with XFree86. The Athena
toolkit is a minimal toolkit with limited configurability, and there-
fore provided limited scope for applying our optimizations. The
event model in more recent (and popular) toolkits such as Gnome
GTK and KDE Qt provides functionality such as signals and slots
that is very similar to the Cactus event model. Such functionality
greatly increases the ease of use and development of client appli-
cations, but increases the cost of event handling significantly. Ap-
plication of our optimization techniques to these systems would
reduce these costs and make event handling through signals and
similar mechanisms no more expensive than “ordinary” event han-
dling, while significantly enhancing ease of programming.

5. POSSIBLE EXTENSIONS
A number of extensions to these optimization techniques are pos-

sible. These range from simple extensions and improved automa-
tion, to extensions for dealing with the dynamic aspects of the event
system and with cases where event execution is not quite determin-
istic. An example of a simple extension would be to perform han-
dler merging for all events that have more than one handler rather
than only the events in frequently executed event chains. Improved
automation includes such items as developing toolkits for instru-
menting the code to do profiling and for generating the optimized
code.
As noted, the ability in event-based programs to change execu-

tion behavior dynamically by, for example, altering event bindings
is a challenge for an optimization approach based on identifying
and utilizing predictable behavior. Our current approach is based
on detecting any change in event bindings and falling back to the
original code for any events affected by the change. A better ap-
proach would be to construct the super-handler so that it can be
used even if some of the bindings change. For example, consider a
predictable event sequence (A,B,C,D) that has been optimized into
one super handler (ABCD). If the handlers for B change, the cur-
rent approach falls back to the original code for this entire event
sequence and all of the performance improvement achieved by the

if event binding for event B changed
call(original code for event B);

else
merged, inlined, and optimized code for event B;

Figure 14: Extended super-handler for dynamic system

optimization are lost. Alternatively, we could organize the (ABCD)
super-handler internally so that the code corresponding to different
events is partitioned as illustrated for event B in figure 14. Then,
even if the event binding for event B changes, the optimized version
can still be used for events A, C, and D.
Other techniques could be used to extend the scope of the opti-

mizations beyond just predictable event chains. For instance, once
all event chains have been optimized, the result is a reduced graph
with no event chains. This reduced graph can be optimized further
using a speculative approach. In this scheme, if event A is followed
by B 90% of the time and C 10% of the time, free cycles during the
execution of A’s handlers can be used to initialize the execution of
B’s handlers. Value-based optimization as suggested in [17] can
also be extended to increase the accuracy of prediction. Another
strategy would be to perform minimal processing for A and defer
the bulk of handling A until the next event occurs. If the next event
is B, optimized code for (AB) can then be executed. This type of
deferral would be particularly useful in a situation where event A is
followed by B or C with equal probability. Heavier optimizations
such as dominator / post-dominator analysis can be used to detect
co-relations between events.
Finally, another possible extension is to explore optimizing asyn-

chronously activated events. As noted above, the current optimiza-
tion can only address event paths in which all activations but the
initial one are synchronous. An asynchronous activation by defini-
tion has much looser semantics than a synchronous activation—the
handlers bound to this event must simply be executed some time
after the event has been activated. Although these semantics make
it difficult to create an optimized program that has identical behav-
ior to an unoptimized one, it should be possible to generate one that
executes the events and handlers in an order that is consistent with
the semantics of event operations. In particular, if an asynchronous
activation of an event A is always eventually followed by the acti-
vation of event B, it may be possible to merge the handlers of A and
B in certain cases. We intend to explore program transformations
of this type.

6. RELATEDWORK
Only a small number of papers have addressed compilation ori-

ented optimization of event-based systems. Chambers et al. discuss

114

122010年5月17日月曜日

