Profile-Guided Code Compression*

Saumya Debray Department of Computer Science University of Arizona Tucson, AZ 85721. debray@cs.arizona.edu William Evans Department of Computer Science University of British Columbia Vancouver B.C. Canada, V6T 1Z4. will@cs.ubc.ca

2010.05.17 読んだ人:みよしたけふみ

Citation Count

既要

🗳 組込向けのコードの削減

- profile-directed optimization
- runtime code generation/modification
- program compression
- 差削減量Ⅰ3.7%(θ=0.0)-Ⅰ8.8%(θ=0.00005)
- 🧯 実行時間 +Δ(θ=0.0) -27%(θ=0.00005)

The basic orgnization

infrequently executed functions

(a) Original

(b) Transformed, during runtime after CreateStub has created RestoreStub(f,98)

Figure 2: Managing Function Calls Out of the Runtime Buffer.

Compression & Decompression

- splitting streams approach [9]
- by encoding each field using Huffman code
 - canonical Huffman encoding

Compressible Region

This is an optimization problem. The input is a control flow graph G = (V, E) for a program in which a vertex b represents a basic block and has size |b| equal to the number of instructions in the block, and an edge (a, b) represents a control transfer from a to b. In addition, the input specifies a subset U of the vertices that can be compressed. The output is a partition of a subset S of the compressible vertices U into regions R_1, R_2, \ldots, R_k so that the following cost is minimized:

where $s(R_i)$ is the size of the region R_i after compression, Y is the set of blocks requiring an entry stub, i.e.,

$$Y = \{b : (a,b) \in E, b \in R_i, \text{ and } a \notin R_i \text{ for some } i\},\$$

D[j]

Compressible Regions

(d) mean

Buffer size bound

upper bound of runtime buffer K= 512

Figure 3: Effect of Buffer Size Bound on Code Size

 c_i

 R_i

K

Cold Codeと圧縮後サイズ

(the geometric mean of) the relative amount of cold and compressible code in our programs

Figure 4: Amount of Cold and Compressible Code (Normalized)

Optimizations

Buffer-Safe Functions

✓ 圧縮コードから非圧縮コード呼出し

- Unswitching
 - 🎽 indirect jump

プロファイル

評価

Program	Profiling Input		Timing Input	
	file name	size (KB)	file name	size (KB)
adpcm	clinton.pcm	295.0	mlk_IHaveADream.pcm	1475.2
	clinton.adpcm	73.8	mlk_IHaveADream.adpcm	182.1
epic	baboon.tif	262.4	baboon.tif	262.4
			lena.tif	262.4
g721_dec	clinton.g721	73.8	mlk_IHaveADream.g721	368.8
g721_enc	clinton.pcm	295.0	mlk_IHaveADream.pcm	1475.2
gsm	clinton.pcm	295.0	mlk_IHaveADream.pcm	1475.2
jpeg_dec	testimg.jpg	5.8	roses17.jpg	25.1
jpeg_end	testimg.ppm	101.5	roses17.ppm	681.1
mpeg2dec	sarnoff2.m2v	102.5	tceh_v2.m2v	2310.7
mpeg2enc	sarnoff2.m2v	102.5	tceh_v2.m2v	2310.7
pgp	compression.ps	717.2	TI-320-user-manual.ps	8456.6
rasta	ex5_c1.wav	17.0	phone.pcmle.wav	83.7

Figure 5: Inputs used for profiling and timing runs

Figure 6: Code Size Reduction due to Profile-Guided Code Compression at Different Thresholds

 $\theta = 0.0001$

Execution time data were obtained on a workstation with a 667 MHz Compaq Alpha 21264 EV67 processor with a split two-way set-associative primary cache (64 Kbytes each of instruction and data cache) and 512 MB of main memory running Tru64 Unix. In each case, the execution time was obtained as the smallest of 10 runs of an executable on an otherwise unloaded system.

 θ

