
2010.05.17
読んだ人: みよしたけふみ

Profile-Guided Code Compression

Saumya Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721.

debray@cs.arizona.edu

William Evans
Department of Computer Science
University of British Columbia

Vancouver B.C. Canada, V6T 1Z4.
will@cs.ubc.ca

ABSTRACT
As computers are increasingly used in contexts where the amount
of available memory is limited, it becomes important to devise
techniques that reduce the memory footprint of application pro-
grams while leaving them in an executable form. This paper de-
scribes an approach to applying data compression techniques to
reduce the size of infrequently executed portions of a program.
The compressed code is decompressed dynamically (via software)
if needed, prior to execution. The use of data compression tech-
niques increases the amount of code size reduction that can be
achieved; their application to infrequently executed code limits the
runtime overhead due to dynamic decompression; and the use of
software decompression renders the approach generally applicable,
without requiring specialized hardware. The code size reductions
obtained depend on the threshold used to determine what code is
“infrequently executed” and hence should be compressed: for low
thresholds, we see size reductions of 13.7% to 18.8%, on average,
for a set of embedded applications, without excessive runtime over-
head.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation;
compilers; optimization; E.4 [Coding and Information Theory]:
Data Compaction and Compression—program representation

General Terms
Experimentation, Performance

Keywords
Code compaction, code compression, code size reduction, dynamic
decompression

This work was supported in part by the National Science Foun-
dation under grants CCR-0073394, EIA-0080123, and CCR-
0113633, the Natural Sciences and Engineering Research Council
of Canada under grant NSERC-238828-01, and by a loan of equip-
ment from the Alpha Development Group of Compaq Computer
Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

1. INTRODUCTION
In recent years there has been an increasing trend towards the

incorporation of computers into a wide variety of devices, such as
palm-tops, telephones, embedded controllers, etc. In many of these
devices, the amount of memory available is limited, due to consid-
erations such as space, weight, power consumption, or price. For
example, the widely used TMS320-C5x DSP processor from Texas
Instruments has only 64 Kwords of program memory for executable
code [23]. At the same time, there is an increasing desire to use
more and more sophisticated software in such devices, such as en-
cryption software in telephones, speech/image processing software
in palm-tops, fault diagnosis software in embedded processors, etc.
Since these devices typically have no secondary storage, an appli-
cation that requires more memory than is available will not be able
to run. This makes it desirable to reduce the application’s runtime
memory requirements for both instructions and data – its memory
footprint – where possible. We focus in this work on reducing the
overall memory footprint by reducing the space required for in-
structions.
The intuition underlying our work is very simple. Most pro-

grams obey the so-called “80-20 rule,” which states, in essence,
that most of a program’s execution time is spent in a small portion
of its code (see [17]); a corollary is that the bulk of a program’s
code is generally executed infrequently. Our work aims at exploit-
ing this aspect of programs by using compression techniques that
yield smaller compressed representations, but may require greater
decompression effort at runtime, on infrequently executed portions
of programs. The expectation is that the increased compression for
the infrequently executed code will contribute to a significant im-
provement in the overall size reduction achieved, but that the con-
comitant increase in decompression effort will not lead to a signifi-
cant runtime penalty because the code affected by it is infrequently
executed.
This apparently simple idea poses some interesting implemen-

tation challenges and requires non-trivial design decisions. These
include the management of memory used to hold decompressed
functions (discussed in Section 2); the design of an effective com-
pression/decompression scheme so that the decompressor code is
small and quick (Section 3); identification of appropriate units for
compression and decompression (Section 4); as well as optimiza-
tions that improve the overall performance of the system (Section
6). Our work combines aspects of profile-directed optimization,
runtime code generation/modification, and program compression.
We discuss other related work in Section 8.

12010年5月17日月曜日

Citation Count

2002

2003

2004

2005

2006

2007

2008

2009

0 5 10 15

citation count

DAC, ASPDAC,
IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems

22010年5月17日月曜日

概要

組込向けのコードの削減

profile-directed optimization

runtime code generation/modification

program compression

削減量13.7%(θ=0.0) - 18.8%(θ=0.00005)

実行時間 +Δ(θ=0.0) - -27%(θ=0.00005)

32010年5月17日月曜日

The basic orgnization

f

g

h

call sites

C3

C4

C5

C6

C2

C1

(a) Original

compressed
code

f.stub

g.stub

h.stub

Decompressor

C1

C2

C3

C4

C5

C6

call sites function offset table

f

g

h

f

h
g

runtime buffer

[1]

0

1

2
[0]

[2]

(b) Compressed

Figure 1: Code Organization: Before and After Compression

2. THE BASIC APPROACH

2.1 Overview
Figure 1 shows The basic organization of code in our system.

Consider a program with three infrequently executed functions,1 f,
g and h, as shown in Figure 1(a). The structure of the code after
compression is shown in Figure 1(b). The code for each of these
functions is replaced by a stub (a very short sequence of instruc-
tions) that invokes a decompressor whose job is to decompress the
code for a function into the runtime buffer and then to transfer con-
trol to this decompressed code. A function offset table specifies the
location within the compressed code where the code for a given
function starts. The stub for each compressed function passes an
argument to the decompressor that is an index into this table; this
argument is indicated in Figure 1(b) by the label ([0], [1], etc.)
on the edge from each stub to the decompressor. The decompressor
uses this argument to index into the function offset table, retrieve
the start address of the compressed code for the appropriate func-
tion, and start generating uncompressed executable code into the
runtime buffer. Decompression stops when the decompressor en-
counters a sentinel (an illegal instruction) that is inserted at the end
of the code for each function. The decompressor then (flushes the
instruction cache, then) transfers control to the code it has gener-
ated in the runtime buffer. When this decompressed function fin-
ishes its execution, it returns to its caller in the usual way. Since the
control transfers from the stubs to the decompressor, and from the
decompressor to the runtime buffer do not alter the return address
transmitted from the original call site, no special action is necessary
to return from a decompressed function to its call site.
This method partitions the original program code into two parts.

Infrequently executed functions (such as f, g, and h) are placed
in a compressed code part, while frequently executed functions re-
main in a never-compressed part. The stub code that manages con-
trol transfers to compressed functions must also lie in the never-
compressed part.
It is important to note that when comparing the space usage of the

original and compressed programs, the latter must take into account
the space occupied by the stubs, the decompressor, the function
offset table, the compressed code, the runtime buffer, and the never-
compressed original program code.

Our implementation uses a notion of “function” that is somewhat
more general than the usual connotation of this term in source lan-
guage programs. We discuss exactly what constitutes such a “func-
tion” in Section 4.

2.2 Buffer Management
The scheme described above is conceptually fairly straightfor-

ward but fails to mention several issues whose resolution deter-
mines its performance. The most important of these is the issue
of function calls in the compressed code. Suppose that in Figure 1,
the code for f contains a call to g. Since f is compressed, the call
site is in the runtime buffer when the call is executed. As described
above, this call will be to the stub for g, and the code for g will
be decompressed and executed as expected. What happens when g
returns? The return address points to the instruction following the
call in f. This is a problem: the instructions for f were over-
written when g was decompressed. The return address points to a
location in the runtime buffer that now contains g’s code.
The question that we have to address, therefore, is: If a function

call is executed from the runtime buffer, how can we guarantee that
the correct code will be executed when the call returns? The an-
swer to this question is inextricably linked with the way we choose
to manage the runtime buffer. We have the following options for
buffer management:
1. We may simply avoid the problem by refusing to compress
any function whose body contains any function calls, since
these may result in a function call from within the runtime
buffer. We reject this option because it severely limits the
amount of code that can be subjected to compression.

2. We may choose to ensure that the decompressed code for
a function is never overwritten until after all function calls
within its body have returned. The simplest way to do this is
never to discard the decompressed code for a function. In this
case, the compressed code for a function is decompressed at
most once—the first time it is called—with subsequent calls
bypassing the decompressor and entering the decompressed
code directly. This conceptually resembles the behavior of
just-in-time compilers that translate interpretable code to na-
tive code [1, 22].
An alternative is to discard the decompressed code for a func-
tion when it is no longer on the call stack, since at this point
we can be certain that any function called by it has returned
to it already. This is the approach taken by Lucco [19],
though rather than immediately discarding a function after
execution, he caches the function in the hope that it might be
re-executed. The Smalltalk-80 system also extracts an exe-
cutable version of a function from an intermediate represen-
tation when the procedure is first invoked [8]. It caches the

infrequently executed functions

frequently codeとstubはnever-compressed partに配置される

f中にgの呼び出しがあるときが問題
(1) 関数呼び出しを含む関数は圧縮しない
(2) 上書き/廃棄しない(JITっぽい)

(3) fをrestoreできるようにしてgを解凍/実行

42010年5月17日月曜日

関数呼び出し管理

0

96bsr $ra, g

return

f: offset
instruction

cs0

entry

97...

(a) Original

EntryStub:
bsr r, Decompress
<index(f), 0>

never−compressed

RestoreStub(f,98):

runtime stub list

bsr $ra, Decompress
<index(f), 98>
<count>

f:
0

cs0 bsr $ra, CreateStub

return

br g
96
97

... 98

entry

runtime buffer

instruction
offset

(b) Transformed, during runtime after CreateStub has created Re-
storeStub(f,98)

Figure 2: Managing Function Calls Out of the Runtime Buffer.

executable code, and only discards it to prevent the system
from running out of memory.
The main drawback with this approach is that the runtime
buffer must be made large enough to hold all of the decom-
pressed functions that can possibly coexist on the call stack.
In the worst case, this is the entire program. The resulting
memory footprint – which includes the space needed for the
runtime buffer as well as the stubs, the decompressor, and the
function offset table – will therefore be bigger than that of the
original program. This approach is therefore not suitable for
limited-memory devices.

3. When a decompressed function f calls a function g from
within the runtime buffer, we may choose to allow the de-
compressor to overwrite f’s code within the buffer. This is
the approach used in our implementation. This has the ben-
efit that we only need a runtime buffer large enough to hold
the code for the largest compressed function. As pointed out
above, however, this means that when the call from g returns,
the runtime buffer may no longer hold the correct instruc-
tions for it to return to. This problem can be solved if we
can ensure that the code for f is restored into the runtime
buffer between the point where the callee g returns and the
point where control is transferred to the caller f. We discuss
below how this can be done.

Suppose that a function f within the runtime buffer calls a com-
pressed function g. In our scheme, this causes the decompressor to
overwrite f’s code in the buffer with g’s code. For correctness, we
have to restore f’s code to the buffer after the call to g returns but
before control is transferred to the appropriate instruction within
f. Since we don’t have any additional storage area where f’s code
could be cached, restoring f’s code to the runtime buffer requires
that it be decompressed again. This means that when control re-
turns from g, it must first be diverted to the decompressor, which
can then decompress f and transfer control to it. The decompressor
must also be given an additional argument specifying to where con-
trol should be transferred in the decompressed function, since the
program may (re-)enter f at some instruction other than its entry
point.
One option is to create a stub at compile time that contains the

function call to g followed by code to call the decompressor to
restore f to the runtime buffer and transfer control to the instruction

after f’s call to g. This stub obviously cannot be placed in the
runtime buffer, since it may be overwritten there; it must be placed
in the never-compressed portion of the program. Since every call
from a compressed function requires its own stub, these restore
stubs amount to a large fraction of the final executable’s size (e.g.,
if we only compress code that is never executed during profiling,
we create restore stubs that occupy 13%, on average, and for some
programs 20% of the never-compressed code; if we compress code
that accounts for at most 1% of the instructions executed during
profiling, the average percentage rises to 27%).
Rather than creating all restore stubs at compile time, we instead

create at runtime, when g is called, a temporary restore stub that ex-
ists only until g returns. The transfer to g is prefaced with code that
generates the restore stub and makes the return address of the orig-
inal call point to this stub. Then an unconditional jump or branch
is made to g.
If every control transfer from compressed code created a restore

stub, we would, in effect, be maintaining a call stack of calls from
compressed code. If the compressed code is recursive, this could
require an arbitrarily large amount of additional space. Instead, we
create only one restore stub for a particular call site in compressed
code and maintain a usage count for that restore stub to determine
when the stub is no longer needed. When asked to create a restore
stub, we first check to see if a stub for that call site already exists
and, if it does, increase its usage count and use its address for the
return address; otherwise we create a new restore stub with usage
count equal to 1. In effect, this implements a simple reference-
count-based garbage collection scheme for restore stubs. The text
area of memory for a program now conceptually consists of three
parts: the never-compressed code; the runtime stub list; and the
runtime decompression buffer (Figure 2(b)).
On return from g, the restore stub invokes the decompressor

which recognizes that it has been called by a restore stub, decre-
ments the stub’s usage count, restores f to the runtime buffer, and
transfers control to the appropriate instruction.
This runtime scheme never creates more restore stubs than the

compile-time scheme, though it does require an additional 8 bytes
per stub in order to maintain the count. In fact, the maximum num-
ber of restore stubs that exist at one time in our test suite is 9 for a
very aggressive profile threshold of , i.e., where the code
considered for compression accounts for 1% of the total dynamic
instruction count of the profiled program (see Section 5).

gから戻るためだけのstubを実行時に生成する
never-compressed partに配置

52010年5月17日月曜日

Compression & Decompression

splitting streams approach [9]

by encoding each field using Huffman code

canonical Huffman encoding

62010年5月17日月曜日

Compressible Region

To reconstruct the instruction sequence, we decompress an op-
code from the opcode stream. This tells us the field types of the
instruction, and we obtain the field values from the corresponding
streams. We repeat this process until the opcode stream is empty.
We compress each stream by encoding each field value in the

stream using a Huffman code that is optimal for the stream. This
is a two-pass process. The first pass calculates the frequency of
the field values and constructs the Huffman code. The second pass
encodes the values using the code. Since the Huffman code is de-
signed for each stream, it must be stored along with the encoded
stream in order to permit decompression.
We use a variant of Huffman encoding called canonical Huffman

encoding that permits fast decompression yet uses little memory
[5]. Like a Huffman code, a canonical Huffman code is an optimal
character-based code (the characters in this case are the field val-
ues). In fact, the length of the canonical Huffman codeword for a
character is the same as the length of the Huffman codeword for that
character. Thus the number of codewords of length in both
encodings is the same. The codewords of length in the canoni-
cal Huffman code are the , -bit numbers

where and for .
For example, if , , and (and
otherwise) then

and the codewords are

Notice that the codewords are completely determined given the
number of codewords of each length, i.e., the ’s.
We store the characters to be encoded in an array

ordered by their codeword value. The advantage of the canonical
Huffman code is that a codeword can be rapidly decoded using the
arrays and .

DECODE()
, , ,

do
NEXTBIT

while ()
return

The compressed program consists of the codeword sequence,
code representation (the array), and value list (the array)
for each stream. In fact, since every instruction begins with an
opcode that completely specifies the remaining fields of the in-
struction, we can merge the codeword sequences of the individual
streams into one sequence. We simply interpret the first bits of the
codeword sequence using the Huffman code for the opcode stream,
and use the decoded opcode to specify the appropriate Huffman
codes to use for the remaining fields. For example, when decoding
a branch instruction, we would read a codeword from the sequence
using first the opcode code, then the register code, and finally the
displacement code. The total space required by the compressed
program is approximately 66% of its original size.
We can achieve somewhat better compression for some streams

using move-to-front coding prior to Huffman coding. This has the
undesirable affect of increasing the code size and running time of
the decompression algorithm. Other approaches that decompress
larger parts of an instruction, or multiple instructions, in one de-
compression operation may result in better and faster decompres-
sion, but these approaches typically require a more complex de-

compression algorithm, or one that requires more space for data
structures.

4. COMPRESSIBLE REGIONS
The “functions” that we use as a unit of compression and decom-

pression may not agree with the functions specified by the program.
It is often the case that a program-specified function will contain
some frequently-executed code that should not be compressed, and
some infrequently-executed (cold) code that should be compressed.
If the unit of compression is the program-specified function then
the entire function cannot be compressed if it contains any code
that cannot be considered for compression. As a result, the amount
of code available for compression may be significantly less than the
total amount of cold code in the program.
In addition, the runtime buffer must be large enough to hold the

largest decompressed function. A single large function may often
account for a significant fraction of the cold code in a program.
Having a runtime buffer large enough to contain this function can
offset most of the space-savings due to compression.
To address this issue, we create “functions” from arbitrary code

regions and allow these regions to be compressed and decompressed.
This means that control transfers into and out of a compressed re-
gion of code may no longer follow the call/return model for func-
tions. For example, we may have to contend with a conditional
branch that goes from one compressed region of code to another,
different, compressed region. Since the runtime buffer holds the
code of at most one such region at any time, a branch from one re-
gion to another must now go through a stub that invokes the decom-
pressor. This is not a terrible complication. A compressed region
might have multiple entry points, each of which requires an entry
stub, but in all other ways it is the same as an original function. For
instance, function calls from within a compressed region are still
handled as discussed in Section 2.
We now face the problem of how to choose regions to com-

press. We want these regions to be reasonably small so that the
runtime buffer can be small, yet we want few control transfers be-
tween different regions so that the number of entry stubs is small.
This is an optimization problem. The input is a control flow graph

for a program in which a vertex represents a basic
block and has size equal to the number of instructions in the
block, and an edge represents a control transfer from to
. In addition, the input specifies a subset of the vertices that
can be compressed. The output is a partition of a subset of the
compressible vertices into regions so that the
following cost is minimized:

never-compressed code

compressed code

function offset table

entry stubs

runtime buffer

where is the size of the region after compression, is
the set of blocks requiring an entry stub, i.e.,

and for some

the constant is the number of words required for an entry stub, and
72010年5月17日月曜日

Compressible Regions

32 64 128 256 512 1024 2048 4096
Buffer size bound

0.70

0.80

0.90

1.00

1.10

1.20

N
or

m
al

iz
ed

 c
od

e
siz

e

a

a

a a a
a

a

a

b

b
b

b b b

b

b
c

c

c c c
c

c

c

d

d

d d d
d

d

d

e

e
e e e e

e

e

f

f

f
f f f

f

f

g

g

g g g g
g

g

h

h
h

h h h
h

h

i

i
i i i i

i ij

j

j
j j j

j
j

k

k
k

k k k k
k

(a)

32 64 128 256 512 1024 2048 4096
Buffer size bound

0.70

0.80

0.90

1.00

1.10

1.20

N
or

m
al

iz
ed

 c
od

e
siz

e

a

a

a a a
a

a

a

b

b

b
b b b

b

b
c

c

c c c

c

c

c

d

d

d
d d

d

d

d

e

e

e e e e

e

ef

f

f
f f f

f

f

g

g

g g g g
g

g

h

h
h

h h h
h

h

i

i
i i i i

i i

j

j

j
j j j

j
j

k

k
k

k k k k
k

(b)

32 64 128 256 512 1024 2048 4096
Buffer size bound

0.70

0.80

0.90

1.00

1.10

1.20

N
or

m
al

iz
ed

 c
od

e
siz

e

a

a

a a a
a

a

a

b

b

b
b b b

b

b

c

c

c
c c

c

c

c

d

d

d
d d

d

d

d

e

e

e
e e e

e

ef

f

f
f f f

f

f

g

g

g g g g
g

g

h

h

h

h h h
h

h

i

i

i
i i i

i i

j

j

j
j j j

j
j

k

k
k

k k k k
k

(c)

32 64 128 256 512 1024 2048 4096
Buffer size bound

0.70

0.80

0.90

1.00

N
or

m
al

iz
ed

 c
od

e
siz

e

0.0
0.00001
0.00005

(d) mean

Key:
a : adpcm
b : epic
c : g721 dec
d : g721 enc
e : gsm
f : jpeg dec
g : jpeg enc
h : mpeg2dec
i : mpeg2enc
j : pgp
k : rasta

Figure 3: Effect of Buffer Size Bound on Code Size

is the number of external function calls within (the decom-
pressor creates an additional instruction for each such call). Note
that we have not included the size of the restore stub list (calculat-
ing its size, even given a partition, is an NP-hard problem).
In practice, we cannot afford to calculate for all possible

regions , so we assume that a fixed compression factor of
applies to all regions (i.e.,). Unfortunately, the
resulting simplified problem is NP-hard (PARTITION reduces to it).
We resort to a simple heuristic to choose the compressible regions.
We first decide which basic blocks can be compressed. Our cri-

teria for this decision are discussed in more detail in Section 5. We
also fix an upper bound on the size of the runtime buffer (our cur-
rent implementation uses an empirically chosen value of
bytes; this is determined as described below). We create an initial
set of regions by performing depth-first search in the control flow
graph. We limit the depth-first search so that it produces a tree that
contains at most instructions and is composed of compressible
blocks from a single function. If it is profitable to compress the
set of blocks in the tree, we make this tree a compressible region;
otherwise, we mark the root of the tree so that we never re-initiate a
depth-first search from it (though it might be visited in a subsequent
depth-first search starting from a different block). We continue the
depth-first search until all compressible blocks have been visited.
To decide if a region containing instructions is profitable to

compress, we compare , the number of instructions saved
by compressing the region, with the number of instructions added
for entry stubs. If , the region is profitable to com-
press.
As mentioned above, we use an empirically determined upper

bound on the size of the runtime buffer to guide the partition-
ing of functions into compressible regions. If we choose too small

a value for , we get a large number of small compressible re-
gions, with a correspondingly large number of entry stubs and func-
tion offset table entries. These tend to offset the space benefits of
having a small runtime buffer, resulting in a large overall memory
footprint. If the value of is too large, we get a smaller number
of distinct compressible regions and function offset table entries,
but the savings there are offset by the space required for the run-
time buffer. Our empirical observations of the variation of overall
code size, as is varied, are shown in Figure 3, for three differ-
ent thresholds of cold code as well as the mean for each of these
thresholds (other values of yield similar curves). It can be seen
that, for these benchmarks at least, the smallest overall code size is
obtained at and . We prefer the latter value be-
cause the larger runtime buffer means that we get somewhat larger
regions and correspondingly fewer inter-region control transfers;
this results in fewer calls to the decompressor at runtime and yields
somewhat better performance.
The partition obtained by depth-first search, in practice, typically

contains many small regions. This is partly due to the presence of
small functions in user and library code, and partly due to frag-
mentation. This incurs overheads from two sources: first, each
compressible region requires a word in the function offset table;
and second, inter-region control transfers require additional code
in the form of entry or restore stubs to invoke the decompressor.
These overheads can be reduced by packing several small regions
into a single larger one that still contains at most instructions.
To pack regions, we start with the set of regions created by the

depth-first search and repeatedly merge the pair that yields the most
savings (without exceeding the instruction bound) until no such
pairs exist. For the pair of regions (and for swapped
with in the following), we save an entry stub for every basic

upper bound of runtime buffer K= 512

82010年5月17日月曜日

Cold Codeと圧縮後サイズ

0.0 0.00001 0.0001 0.001 0.01 0.1 1.0
Threshold

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Fr

ac
tio

n
of

 C
od

e

cold code

compressible code

Figure 4: Amount of Cold and Compressible Code (Normal-
ized)

block in region that has incoming edges from (and possibly
from) but from no other region. For every call from region to

, we save a restore stub. We may also save a jump instruction for
every fall-through edge from region to .

In principle, the packing of regions in this way involves a space-
time tradeoff: packing saves space, but since each region is de-
compressed in its entirety before execution, the resulting larger re-
gions incur greater decompression cost at runtime. However, given
that only infrequently-executed code is subjected to runtime de-
compression, the actual increase in runtime cost is not significant.

5. IDENTIFYING COLD CODE
The discussion so far has implicitly assumed that we have iden-

tified portions of the program as “cold” and, therefore, candidates
for compression. The determination of which portions of the pro-
gram are cold is carried out as follows. We start with a threshold

, , that specifies the maximum fraction of the total
number of instructions executed at runtime (according to the execu-
tion profile for the program) that cold code can account for. Thus,

means that all of the code identified as cold should ac-
count for at most 25% of the total number of instructions executed
by the program at runtime.

Let the weight of a basic block be the number of instructions
in the block multiplied by its execution frequency, i.e., the block’s
contribution to the total number of instructions executed at runtime.
Let tot instr ct be the total number of instructions executed by the
program, as given by its execution profile. Given a value of ,
we consider all basic blocks in the program in increasing order of
execution frequency, and determine the largest execution frequency

such that

Any basic block whose execution frequency is at most is consid-
ered to be cold.

Figure 4 shows (the geometric mean of) the relative amount of
cold and compressible code in our programs at different thresholds.
It can be seen, from Figure 4, that the amount of cold code varies
from about 73% of the total code, on average, when the threshold

(where only code that is never executed is considered cold)
to about 94% at (the cold code accounts for 1% of the
total number of instructions executed by the program at runtime),
to 100% at . However, not all of this cold code can be
compressed: the amount of compressible code varies from about
69% of the program at to about 90% at , to
about 96% at . The reason not all of the cold code is

compressible, at any given threshold, is that, as discussed in Section
4, a region of code may not be considered for compression even if
it is cold, because it is not profitable to do so.

6. OPTIMIZATIONS

6.1 Buffer-Safe Functions
As discussed earlier, function calls within compressed code cause

the creation, during execution, of a restore stub and an additional
instruction in the runtime buffer. This overhead can be avoided if
the callee is buffer-safe, i.e., if it and any code it might call will not
invoke the decompressor. If the callee is buffer-safe, then the run-
time buffer will not be overwritten during the callee’s execution, so
the return address passed to the callee can be simply the address of
the instruction following the call instruction in the runtime buffer:
there is no need to create a stub for the call or to decompress the
caller when the call returns. In other words, a call from within a
compressed region to a buffer-safe function can be left unchanged.
This has two benefits: the space cost associated with the restore
stub and the additional runtime buffer instruction is eliminated, and
the time cost for decompressing the caller on return from the call is
avoided.

We use a straightforward iterative analysis to identify buffer-safe
functions. We first mark all regions that are clearly not buffer-safe:
i.e., those that have been identified as compressible, and those that
contain indirect function calls whose possible targets may include
non-buffer-safe regions. This information is then propagated itera-
tively to other regions: if is a region marked as non-buffer-safe,
and is a region from which control can enter —either through
a function call or via a branch operation—then is also marked
as being non-buffer-safe. This is repeated until no new region can
be marked in this way. Any region that is left unmarked at the end
of this process is buffer-safe.

For the benchmarks we tested, this analysis identifies on the
average, about 12.5% of the compressible regions as buffer-safe;
the gsm and g721 enc benchmarks have the largest proportion of
buffer-safe regions, with a little over 20% and 19%, respectively,
of their compressible regions inferred to be buffer-safe.

6.2 Unswitching
If a code region contains indirect jumps through a jump table, it

is necessary to process any such code to ensure that runtime con-
trol transfers within the decompressed code in the runtime buffer
are carried out correctly. We have two choices: we can either up-
date the addresses in the jump table to point into the runtime buffer,
at the locations where the corresponding targets would reside when
the region is decompressed; or we can “unswitch” the region to use
a series of conditional branches instead of an indirect jump through
a table. Note that in either case, we have to know the size of the
jump table: in the context of a binary rewriting implementation
such as ours, this may not always be possible. If we are unable to
determine the extent of the jump table, the block containing the in-
direct jump through the table and the set of possible targets of this
jump must be excluded from compression. For the sake of sim-
plicity, our current implementation uses unswitching to eliminate
the indirect jump, after which the space for the jump table can be
reclaimed.

7. EXPERIMENTAL RESULTS
Our ideas have been implemented in the form of a binary-rewriting

tool called squash that is based on squeeze, a compactor of Compaq
Alpha binaries [7]. Squeeze is based on alto, a post-link-time code
optimizer [20]. Squeeze alone compacts binaries that have already

(the geometric mean of) the relative amount of cold and compressible code in our programs

92010年5月17日月曜日

Optimizations

Buffer-Safe Functions

圧縮コードから非圧縮コード呼出し

Unswitching

indirect jump

102010年5月17日月曜日

Program Profiling Input Timing Input
file name size (KB) file name size (KB)

adpcm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
clinton.adpcm 73.8 mlk IHaveADream.adpcm 182.1

epic baboon.tif 262.4 baboon.tif 262.4
lena.tif 262.4

g721 dec clinton.g721 73.8 mlk IHaveADream.g721 368.8
g721 enc clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
gsm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
jpeg dec testimg.jpg 5.8 roses17.jpg 25.1
jpeg end testimg.ppm 101.5 roses17.ppm 681.1
mpeg2dec sarnoff2.m2v 102.5 tceh v2.m2v 2310.7
mpeg2enc sarnoff2.m2v 102.5 tceh v2.m2v 2310.7
pgp compression.ps 717.2 TI-320-user-manual.ps 8456.6
rasta ex5 c1.wav 17.0 phone.pcmle.wav 83.7

Figure 5: Inputs used for profiling and timing runs

a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j kM M M M M M M
0

10

20

30

C
od

e
Si

ze
 r

ed
uc

tio
n

(%
)

0.0 0.00001 0.0001 0.001 0.01 0.1 1.0

Thresholds

Key:
a : adpcm d : g721 enc g : jpeg enc j : pgp
b : epic e : gsm h : mpeg2dec k : rasta
c : g721 dec f : jpeg dec i : mpeg2enc M : GEOM. MEAN

Figure 6: Code Size Reduction due to Profile-Guided Code Compression at Different Thresholds

been space optimized by about 30% on average. Squash, using
the runtime decompression scheme outlined in this paper, compacts
squeezed binaries by about another 14–19% on average.
To evaluate our work we used eleven embedded applications

from theMediaBench benchmark suite (available at www.cs.ucla.
edu/˜leec/mediabench): adpcm, which does speech com-
pression and decompression; epic, an image data compression util-
ity; g721 dec and g721 enc, which are reference implementations
from Sun Microsystems of the CCITT G.721 voice compression
decoder and encoder; gsm, an implementation of the European
GSM 06.10 provisional standard for full-rate speech transcoding;
jpeg dec and jpeg enc, which implement JPEG image decompres-
sion and compression; mpeg2dec and mpeg2enc, which implement
MPEG-2 decoding and encoding respectively; pgp, a popular cryp-
tographic encryption/decryption program; and rasta, a speech-analysis
program. The inputs used to obtain the execution profiles used to
guide code compression, as well as those used to evaluate execu-
tion speed (Figure 7(b)), are described in Figure 5: the profiling

inputs refer to those used to obtain the execution profiles that were
used to carry out compression, while the timing inputs refer to the
inputs used to generate execution time data for the uncompressed
and compressed code. Details of these benchmarks are given in the
Appendix.
These programs were compiled using the vendor-supplied C com-

piler cc V5.2-036, invoked as cc -O1, with additional flags in-
structing the linker to retain relocation information and to produce
statically linked executables.2 The vendor-supplied compiler cc
produces the most compact code at optimization level -O1: it car-
ries out local optimizations and recognition of common subexpres-
sions; global optimizations including code motion, strength reduc-
tion, and test replacement; split lifetime analysis; and code schedul-

The requirement for statically linked executables is a result of the
fact that alto relies on the presence of relocation information to dis-
tinguish addresses from data. The Tru64 Unix linker ld refuses to
retain relocation information for executables that are not statically
linked.

プロファイル 評価

112010年5月17日月曜日

Program Profiling Input Timing Input
file name size (KB) file name size (KB)

adpcm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
clinton.adpcm 73.8 mlk IHaveADream.adpcm 182.1

epic baboon.tif 262.4 baboon.tif 262.4
lena.tif 262.4

g721 dec clinton.g721 73.8 mlk IHaveADream.g721 368.8
g721 enc clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
gsm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
jpeg dec testimg.jpg 5.8 roses17.jpg 25.1
jpeg end testimg.ppm 101.5 roses17.ppm 681.1
mpeg2dec sarnoff2.m2v 102.5 tceh v2.m2v 2310.7
mpeg2enc sarnoff2.m2v 102.5 tceh v2.m2v 2310.7
pgp compression.ps 717.2 TI-320-user-manual.ps 8456.6
rasta ex5 c1.wav 17.0 phone.pcmle.wav 83.7

Figure 5: Inputs used for profiling and timing runs

a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j k a b c d e f g h i j kM M M M M M M
0

10

20

30

C
od

e
Si

ze
 r

ed
uc

tio
n

(%
)

0.0 0.00001 0.0001 0.001 0.01 0.1 1.0

Thresholds

Key:
a : adpcm d : g721 enc g : jpeg enc j : pgp
b : epic e : gsm h : mpeg2dec k : rasta
c : g721 dec f : jpeg dec i : mpeg2enc M : GEOM. MEAN

Figure 6: Code Size Reduction due to Profile-Guided Code Compression at Different Thresholds

been space optimized by about 30% on average. Squash, using
the runtime decompression scheme outlined in this paper, compacts
squeezed binaries by about another 14–19% on average.
To evaluate our work we used eleven embedded applications

from theMediaBench benchmark suite (available at www.cs.ucla.
edu/˜leec/mediabench): adpcm, which does speech com-
pression and decompression; epic, an image data compression util-
ity; g721 dec and g721 enc, which are reference implementations
from Sun Microsystems of the CCITT G.721 voice compression
decoder and encoder; gsm, an implementation of the European
GSM 06.10 provisional standard for full-rate speech transcoding;
jpeg dec and jpeg enc, which implement JPEG image decompres-
sion and compression; mpeg2dec and mpeg2enc, which implement
MPEG-2 decoding and encoding respectively; pgp, a popular cryp-
tographic encryption/decryption program; and rasta, a speech-analysis
program. The inputs used to obtain the execution profiles used to
guide code compression, as well as those used to evaluate execu-
tion speed (Figure 7(b)), are described in Figure 5: the profiling

inputs refer to those used to obtain the execution profiles that were
used to carry out compression, while the timing inputs refer to the
inputs used to generate execution time data for the uncompressed
and compressed code. Details of these benchmarks are given in the
Appendix.
These programs were compiled using the vendor-supplied C com-

piler cc V5.2-036, invoked as cc -O1, with additional flags in-
structing the linker to retain relocation information and to produce
statically linked executables.2 The vendor-supplied compiler cc
produces the most compact code at optimization level -O1: it car-
ries out local optimizations and recognition of common subexpres-
sions; global optimizations including code motion, strength reduc-
tion, and test replacement; split lifetime analysis; and code schedul-

The requirement for statically linked executables is a result of the
fact that alto relies on the presence of relocation information to dis-
tinguish addresses from data. The Tru64 Unix linker ld refuses to
retain relocation information for executables that are not statically
linked.

122010年5月17日月曜日

評価結果

a
d

p
c

m

e
p

ic

g
7

2
1

_
d

e
c

g
7

2
1

_
e

n
c

g
s

m

jp
e

g
_

d
e

c

jp
e

g
_

e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

p
g

p

ra
s

ta

G
e

o
m

.
M

e
a

n

0

10

20

30

C
od

e
Si

ze
 r

ed
uc

tio
n

(%
)

13
.7
16
.8 18
.8

Thresholds
0.0
0.00001
0.00005

(a) Code Size

a
d

p
c
m

e
p

ic

g
7
2
1
_
d

e
c

g
7
2
1
_
e
n

c

g
s
m

jp
e
g

_
d

e
c

jp
e
g

_
e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e
n

c

p
g

p

ra
s
ta

G
e
o

m
.
M

e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

iz
ed

)

1.
00 1.
04
1.
24

Thresholds
0.0
0.00001
0.00005

(b) Execution Time

Figure 7: Effect of Profile-Guided Compression on Code Size and Execution Time

ing; but not size-increasing optimizations such as inlining; integer
multiplication and division expansion using shifts; loop unrolling;
and code replication to eliminate branches.
The programs were then compacted using squeeze. Squeeze elim-

inates redundant, unreachable, and dead code; performs interpro-
cedural strength reduction and constant propagation; and replaces
multiple similar program fragments with function calls to a single
representative function (i.e., it performs procedural abstraction).
Squeeze is very effective at compacting code. If we start with an ex-
ecutable produced by cc -O1 and remove unreachable code and
no-op instructions, squeeze will reduce the number of instructions
that remain by approximately 30% on average.
The remaining instructions were given to squash along with pro-

file information obtained by running the original executable on sam-
ple inputs to obtain execution counts for the program’s basic blocks.
Squash produces an executable that contains never-compressed code,
entry stubs, the function offset table, the runtime decompressor, the
compressed code, the buffer used to hold dynamically generated
stubs, and the runtime buffer. All of this space is included in the
code size measurement of squashed executables.
Figure 6 shows how the amount of code size reduction obtained

using profile-guided compression varies with the cold code thresh-
old . With , only code that is never executed is con-
sidered to be cold; in this case, we see size reductions ranging
from 9.0% (g721 enc) to 22.1% (pgp), with a mean reduction of
13.7%. The size reductions obtained increase as we increase ,

which makes more and more code available for compression. Thus,
at we have size reductions ranging from 12.1% (ad-
pcm) to 23.7% (pgp), with a mean reduction of 16.8%. At the
extreme, with , i.e., all code considered cold, the code
size reductions range from 21.5% (adpcm) to 31.8% (pgp), with a
mean of 26.5%. It is noteworthy that much of the size reductions
are obtained using quite low thresholds, and that the rate at which
the reduction in code size increases with is quite small. For ex-
ample, increasing by five orders of magnitude, from to
, yields only an additional 10% benefit in code size reduction.

However, as is increased, the runtime overhead associated with
repeated dynamic decompression of code quickly begins to make
itself felt. Our experience with this set of programs (and others)
indicates that beyond the runtime overhead becomes
quite noticeable. To obtain a reasonable balance between code size
improvements and execution speed, we focus on values of up to
0.00005.
Execution time data were obtained on a workstation with a 667

MHz Compaq Alpha 21264 EV67 processor with a split two-way
set-associative primary cache (64 Kbytes each of instruction and
data cache) and 512 MB of main memory running Tru64 Unix. In
each case, the execution time was obtained as the smallest of 10
runs of an executable on an otherwise unloaded system.
Figure 7 examines the performance of our programs, both in

terms of size and speed, for ranging from 0.0 to 0.00005. The fi-
nal set of bars in this figure shows the mean values for code size re-

a
d

p
c
m

e
p

ic

g
7

2
1

_
d

e
c

g
7

2
1

_
e

n
c

g
s

m

jp
e

g
_

d
e

c

jp
e

g
_

e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e

n
c

p
g

p

ra
s

ta

G
e
o

m
.

M
e

a
n

0

10

20

30

C
od

e
Si

ze
 r

ed
uc

tio
n

(%
)

13
.7
16
.8 18
.8

Thresholds
0.0
0.00001
0.00005

(a) Code Size

a
d

p
c
m

e
p

ic

g
7
2
1
_
d

e
c

g
7
2
1
_
e
n

c

g
s
m

jp
e
g

_
d

e
c

jp
e
g

_
e
n

c

m
p

e
g

2
d

e
c

m
p

e
g

2
e
n

c

p
g

p

ra
s
ta

G
e
o

m
.
M

e
a
n

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

iz
ed

)

1.
00 1.
04
1.
24

Thresholds
0.0
0.00001
0.00005

(b) Execution Time

Figure 7: Effect of Profile-Guided Compression on Code Size and Execution Time

ing; but not size-increasing optimizations such as inlining; integer
multiplication and division expansion using shifts; loop unrolling;
and code replication to eliminate branches.
The programs were then compacted using squeeze. Squeeze elim-

inates redundant, unreachable, and dead code; performs interpro-
cedural strength reduction and constant propagation; and replaces
multiple similar program fragments with function calls to a single
representative function (i.e., it performs procedural abstraction).
Squeeze is very effective at compacting code. If we start with an ex-
ecutable produced by cc -O1 and remove unreachable code and
no-op instructions, squeeze will reduce the number of instructions
that remain by approximately 30% on average.
The remaining instructions were given to squash along with pro-

file information obtained by running the original executable on sam-
ple inputs to obtain execution counts for the program’s basic blocks.
Squash produces an executable that contains never-compressed code,
entry stubs, the function offset table, the runtime decompressor, the
compressed code, the buffer used to hold dynamically generated
stubs, and the runtime buffer. All of this space is included in the
code size measurement of squashed executables.
Figure 6 shows how the amount of code size reduction obtained

using profile-guided compression varies with the cold code thresh-
old . With , only code that is never executed is con-
sidered to be cold; in this case, we see size reductions ranging
from 9.0% (g721 enc) to 22.1% (pgp), with a mean reduction of
13.7%. The size reductions obtained increase as we increase ,

which makes more and more code available for compression. Thus,
at we have size reductions ranging from 12.1% (ad-
pcm) to 23.7% (pgp), with a mean reduction of 16.8%. At the
extreme, with , i.e., all code considered cold, the code
size reductions range from 21.5% (adpcm) to 31.8% (pgp), with a
mean of 26.5%. It is noteworthy that much of the size reductions
are obtained using quite low thresholds, and that the rate at which
the reduction in code size increases with is quite small. For ex-
ample, increasing by five orders of magnitude, from to
, yields only an additional 10% benefit in code size reduction.

However, as is increased, the runtime overhead associated with
repeated dynamic decompression of code quickly begins to make
itself felt. Our experience with this set of programs (and others)
indicates that beyond the runtime overhead becomes
quite noticeable. To obtain a reasonable balance between code size
improvements and execution speed, we focus on values of up to
0.00005.
Execution time data were obtained on a workstation with a 667

MHz Compaq Alpha 21264 EV67 processor with a split two-way
set-associative primary cache (64 Kbytes each of instruction and
data cache) and 512 MB of main memory running Tru64 Unix. In
each case, the execution time was obtained as the smallest of 10
runs of an executable on an otherwise unloaded system.
Figure 7 examines the performance of our programs, both in

terms of size and speed, for ranging from 0.0 to 0.00005. The fi-
nal set of bars in this figure shows the mean values for code size re-

132010年5月17日月曜日

