動的再構成可能データベース処理エンジンと クエリコンパイラの検討

三好健文¹⁾ 寺田裕太²⁾ 川島英之³⁾ 吉永努¹⁾ 1)電気通信大学大学院情報ネットワークシステム学研究科 2)電気通信大学電気通信学部 3)筑波大学大学院システム情報工学研究科

ストリーム 動的再構成可能データベース処理エンジンと クエリコンパイラの検討

三好健文¹⁾ 寺田裕太²⁾ 川島英之³⁾ 吉永努¹⁾ 1)電気通信大学大学院情報ネットワークシステム学研究科 2)電気通信大学電気通信学部 3)筑波大学大学院システム情報工学研究科

▶ 専用ハードウェアによる高速なストリーム処理 と動的クエリ最適化可能な柔軟性を有する 動的再構成可能ストリーム処理エンジンの プロセッサアーキテクチャを設計

▶ HWリソース量/動作周波数および再構成に必要 な時間を評価

4

- ▶ 背景 ストリームとストリーム処理エンジン
- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価
- ▶ まとめと今後の課題

▶ 背景 - ストリームとストリーム処理エンジン

- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価
- ▶ まとめと今後の課題

(データ)ストリーム

- ▶ 時事刻々と変化するデータ
 - ▶ 東京証券取引所 2ms
 - ▶ ルータ 300Tbps
 - ▶ 産業用ロボット(モータ制御) 1ms
 - ▶ 監視カメラ 30fps * 台数

ストリーム処理

データストリーム: 進展する高速化(322 Tbps, Ring of Steel) アプリケーション: 高度な解析*を要求(異常検知,行動解析)

*解析のみならず、信憑性なども要求される可能性有

第52回プログラミングシンポジウム

8

ストリーム処理エンジン

- 連続的問合せは演算木に変換
- ▶ データ到着毎に問合せ結果が出力
- ▶ RDBと類似した演算子
 - -w(Window): 窓演算(1分間だけ)
 - $-\sigma$ (Selection): 選択演算(一部タプルを抜粋)
 - α (Aggregation): 集約演算(数え上げ)

ストリーム処理エンジン

10

- ▶ 連続的問合せは演算木に変換
- ▶ データ到着毎に問合せ結果が出力
- ▶ RDBと類似した演算子
 - w(Window): 窓演算(1分間だけ)
 - $-\sigma$ (Selection): 選択演算(一部タプルを抜粋)
 - α (Aggregation): 集約演算(数え上げ)

▶ 背景 - ストリームとストリーム処理エンジン

- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価

11

▶ まとめと今後の課題

Streams on Wires^{[1][2]}

<u>FPGAを用いたストリーム処理エンジンの実現</u>

- 連続的問合せは演算木に変換
- データ到着毎に問合せ結果が出力
- RDBと類似した演算子
 - 窓演算(1分間だけ) - w(Window) :
 - $-\sigma$ (Selection): 選択演算(一部タプルを抜粋)

12

- α (Aggregation): 集約演算

Users/Apps.

FPGA: 自由に処理内容を設計可能な デバイス

1) Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires: a query compiler for fpgas. Proc. VLDB Endow., Vol.2, No.1, pp. 229-240, 2009.

Result

2) Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: a query-to-hardware compiler. In SIGMOD '10: Proceedings of the 2010 international conference on Management of data, pp. 1159–1162, New York, NY, USA, 2010. ACM.

▶ 論理回路・データパスを自由に作り込める

▶ クロックレベルの同期と細粒度並列性の活用

(Br

Streams on Wires

Trades Streamseon4Wiresの問題点uery Q5

動的クエリ最適化の適用が困難

Trades Streamseon4Wiresの問題点の解決 粗粒度の"動的再構成"で解決!!

- ▶ 背景 ストリームとストリーム処理エンジン
- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価
- ▶ まとめと今後の課題

動的再構成可能ストリーム処理エンジン (DR-SPE)

DR-SPEの要求仕様

▶ ストリームデータ処理を実行可能

- = Streams on Wires同等の機能を実現可能
- ▶ 高い演算性能の実現
 - ▶ サイクルレベルでの処理
 - ▶ (パイプライン)並列性の活用
- ▶ 動作を実行時に追加/変更できること

DR-SPEの設計課題

- ▶ ハードウェアリソース量増加の抑制
 - ▶ リソース使用率の向上
- ▶ 最大動作周波数低下の抑制
 - ▶ 接続関係の柔軟性とスイッチによる信号遅延 増加のトレードオフ
- ▶ 再構成時間の最小化
 - ▶ 柔軟性と構成情報量のトレードオフ

- ▶ 背景 ストリームとストリーム処理エンジン
- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価
- ▶ まとめと今後の課題

DR-SPEで実現すべき演算

<u>= Streams on Wires同等の演算機能</u>

他の動的再構成可能プロセッサとの違い ADRES, FE-GA, DRP, DAP-DNAなどとの違い

- ▶ 窓演算に対応する入出力制御
- ▶ データの集合に対する操作が必要
 - ▶ 複数データの流れの切り替え操作
 - ▶ データの演算だけではない(v.s. フィルタ)

スイッチボックスおよび ストリーム入出力制御器でサポート

DR-SPE プロセッサアーキテクチャ

25

スイッチボックス

ストリーム入出力制御器

28

クエリコンパイラ

<u>所望のクエリをDR-SPE上に構成する</u>

- ▶ 与えられたクエリをAlgebra集合に分解
- ▶ Algebraのデータ授受関係をグラフ化
- ▶ AlgebraをのDR-SPE中の各要素に割当
 - ▶ Grouping, Windowingは同一の単位演算 ユニットグループへ

第52回プログラミングシンポジウム

▶ 各要素の設定値を決定する

設計したDR-SPEの評価

▶ HWリソースの増加量

▶ 最大動作周波数の低下量(→ 処理性能)

▶ 再構成時間

合成結果(HWリソース量と信号遅延)

対象とするDR-SPEの構成

単位演算ユニット

FPGAへのクエリの直接構成時との比較

FPGA上に直接構成した場合

DR-SPE上に構成した場合

Query	レジスタ数/LUT数	
Q1	202/8	
Q2	270/10	V.S.
Q3	585/272	
Q4	698/283	

最大動作周波数:約200MHz = 19200Mbps

ユニット数	レジスタ数/LUT数
2	362/966
4	724/1932
11	1991/5313
15	2715/7254
	ユニット数 2 4 11 15

最大動作周波数: 172.1MHz

33

= 16521Mbps

動的再構成にかかる時間

<u>構成要素を設定するために必要なデータサイズ</u>

対象とするDR-SPEの構成

Tuple bit width	96 bit
Operator bit width	32 bit
#. of units in a block	8
#. of max union ways	8

34

- ▶ 背景 ストリームとストリーム処理エンジン
- ▶ 既存手法と課題 Streams on Wires -
- ▶ 動的再構成可能ストリーム処理エンジン
- ▶ プロセッサアーキテクチャの設計と評価
- ▶ まとめと今後の課題

- ▶ 動的再構成可能ストリーム処理エンジンを設計
 - ▶ Streams on Wires同等の演算機能
 - ▶ クロックレベルでの高い処理性能
- ▶ HWリソース量/信号遅延/再構成時間を評価
 - ▶ HWリソース増加率 = ~4倍程度 / ~25倍程度
 - ▶ 最大動作周波数低下率 = 86%程度
 - ▶ 再構成時間 = 数十µ秒オーダ

▶ クエリコンパイラの整備

▶ 配置最適化,コンパイル時間の短縮

▶ アーキテクチャの最適化

- ▶ もっとさぼれるところはさぼる
- ▶ 接続関係の見直し
- ▶ I/F, I/Oまわりの実装 → 実アプリでの評価

