Space－Time Trade－Off Optimization for a Class of Electronic Structure Calculations

Daniel Cociorva ${ }^{1}$ Gerald Baumgartner ${ }^{1}$
J．Ramanujam ${ }^{2}$ Marcel Nooijen ${ }^{3}$
${ }^{1}$ Dept．of Computer and Information Science
The Ohio State University
\｛cociorva，gb，clam，saday\}
＠cis．ohio－state．edu
${ }^{2}$ Dept．of Electrical and Computer Engineering
Louisiana State University jxr＠ece．lsu．edu

Chi－Chung Lam ${ }^{1}$ P．Sadayappan ${ }^{1}$
David E．Bernholdt ${ }^{4}$ Robert Harrison ${ }^{5}$
${ }^{3}$ Department of Chemistry
Princeton University
Nooijen＠Princeton．edu
${ }^{4}$ Oak Ridge National Laboratory bernholdtde＠ornl．gov
${ }^{5}$ Pacific Northwest National Laboratory
Robert．Harrison＠pnl．gov

読んだ人：みよしたけふみ

100 to 1000TB

$$
\begin{aligned}
S_{a b i j} & =\sum_{c d e f k l} A_{a c i k} \times B_{b e f l} \times C_{d f j k} \times D_{c d e l} \\
S_{a b i j} & =\sum_{c k}\left(\sum_{d f}\left(\sum_{e l} B_{b e f l} \times D_{c d e l}\right) \times C_{d f j k}\right) \times A_{a c i k}
\end{aligned}
$$

> (b) Direct implementation (unfused code)

```
S = 0
for b, c
T1f=0; T2f=0
    for d, f
    [for e, l
        T1f += Bbefl D Ddel
        for j, k
        T2fijk += T1f Clfjk
    for a, i, j, k
    [ [ S Sabij += T2ffjk A Acik
```

（c）Memory－reduced implementation（fused）

Figure 1：Example illustrating use of loop fusion for memory reduction．

Optimization System

Algebraic Transformations
Memory Minimization
\＆Space－Time Transformation
\＆Data Locality Optimization
Data Distribution and Partitioning

Fusion Graph

can be used to facilitate enumeration of all possible compatible fusion configurations for a given computation tree．
The potential for fusion of a common loop among a producer－consumer pair of loop nests is indicated in the fusion graph through a dashed edge connecting the corresponding vertices．

Figure 5：Fusion graph for unfused operation－minimal form of loop in Figure 2.

Example（I）

$c e b k$
$a f b k$
（a）Fully fused computation from Fig． 3.

Example（2）

```
for at, et, ct, f
    for a, e, c, f
    [ for i, j 
    for b, k
        for c, e
        [T1ce = fl (c,e,b,k)
        for a, f
        [T2af = f2 (a,f,b,k)
        for c, e, a, f
        [ Y ceaf += T1ce T2af
    for c, e, a, f
    E += Xaecf Y Yeaf
\begin{tabular}{l|c|c} 
array & space & time \\
\hline X & \(B^{4}\) & \(V^{4} O^{2}\) \\
T1 & \(B^{2}\) & \(C_{f} V^{5} O / B^{2}\) \\
T2 & \(B^{2}\) & \(C_{f} V^{5} O / B^{2}\) \\
Y & \(B^{4}\) & \(V^{5} O\) \\
E & 1 & \(V^{4}\)
\end{tabular}
            E ceaf cole}\mp@subsup{c}{}{t}\mp@subsup{d}{}{t}\mp@subsup{f}{}{t}cee af
```


（b）Partially fused computation from Fig． 4.

Space－Time Tradeoff Exploration

－Search among all possible ways of introducing redundant loop indices in the fusion graph to reduce memory require－ ments，and determine the optimal set of lower dimensional intermediate arrays for various total memory limits．In this step，the use of tiling for partial reduction of array extents is not considered．However，among all possible combinations of lower dimensional arrays for intermediates，the combina－ tion that minimizes recomputation cost is determined，for a specified memory limit．The range from zero to the actual memory limit is split into subranges within which the op－ timal combination of lower dimensional arrays remains the same．
－Because the first step only considers complete fusion of loops， each array dimension is either fully eliminated or left intact， i．e．partial reduction of array extents is not performed．The objective of the second step is to allow for such arrays．Start－ ing from each of the optimal combinations of lower dimen－ sional intermediate arrays derived in the first step，possible ways of using tiling to partially expand arrays along previ－ ously compressed dimensions are explored．The goal is to further reduce recomputation cost by partially expanding ar－ rays to fully utilize the available memory

Space－Time optimization

Dimension Reduction for Intermediate Arrays
\notin search among all possible combination
\＆memory and recomputation costs
\＆Partial Expansion of Reduced Intermediates
\＆resort to array expansion
for determining the best choice for array expansion costs

Result

