
 Abstract

・ the papers abstracts a number of considerations that must be observed in new UPC compiler
developments, such as for the future IBM PERCS architecture
・PERCS is supported in part by the DARPA under contract No. NBCH30390004

 Introduction

 A Quick UPC Overview

・ under UPC, application memory consists of two separate spaces: a shared memory space and a
private memory space.

・ among the interesting and complementary UPC features is a wok-sharing iteration statement,
known as upc_forall()

・ the language offers a broad range of synchronization and memory consistency control constructs.
・ among the most interesting synchronization concepts is the non-blocking barrier, which allows

overlapping local computations with synchronization

 Background on PERCS and UPC

・ DARPA HPCS program is concerned with the development time of applications as well, and aims
at significantly reducing the overall time-to-solution.

・ PERCS is using innovative techniques to address lengthening memory and communication
latencies

 UPC Compilers on Distribute Memory Systems

 Low-Level Library Implementations

・ In some compiler implementations this can be costly to the point that makes an access into a
thread’s private space orders of magnitude faster than accesses into the thread’s local shared
space, even though both spaces can be mapped into the same physical memory.

・the fact that UPC compilers are still maturing and may not automatically realize that local accesses
can avoid the overhead of shared address calculations

・An important emulation of effective access to local shared data is privatization, which makes local
shared objects appear as if they were private. This emulation is implemented by casting a local
shared pointer to a private pointer and using the private pointer for accessing the local shared
objects as if they were private.

 Aggregation and Overlapping of Remote Shared Memory Accesses

・Affinity analysis at compile time may reveal what remote accesses will be needed and when.
・Therefore, one other optimization is aggregating and prefetching remote shared accesses, which as

shown in Table 2 can provide substantial performance benefits.
・split-phase barriers, to hide synchronization cost
・as source to source automatic compiler optimizations.
・The N-Queens problem does not get any benefit from such optimizations
・which does not require significant shared data.
・that N-Queens and embarrassingly parallel applications that do not require extensive use of shared

data will not be adversely affected by such optimizations.
・The Sobel Edge Detection performance on the NUMA machine: This case illustrates the importance

1

of these optimizations.

 Low level communication optimizations

・ Low level communication optimizations like Communication and Computation Overlap and
Message Coalescing and Aggregation have been shown in the GASNET interface [CHEN03].

 UPC OPTIMIZATIONS AND MEASUREMENTS ON
DISTRIBUTED SHARED MEMORY SYSTEMS

Shared Address Translation

・ the memory model translation to virtual space can be quite costly
・ it is clear that the address translation overhead is quite significant as it added more than 70% of

overhead work in this case.

UPC Work-sharing Construct Optimizations

・UPC features a work-sharing construct, upc_forall, that can be easily used to distribute independent
loop body across threads, figure 7

・High quality compiler implementations should be able to avoid these extra evaluations.
・Evaluating the affinity field will introduce additional overhead.
・“overhead-free” for loops

 Performance Limitations Imposed by Sequential C Compilers

・Recent studies [ElGH05] over the distributed shared memory NUMA machines, clusters, and
Scalar/vector architectures have shown that the sequential performance between C and Fortran can
greatly differ.

・ The measurements show that sequential C is generally performing roughly two times slower than
Fortran.

・Especially for the scalar/vector architecture in which the vectorized codes usually perform much
faster than those executed only in the scalar units.

・with the use of proper pragma(s), similar levels of performance were obtained.

LESSONS LEARNED AND PERCS UPC

・UPC implementation on future architectures such as PERCS must take advantage of the
performance studies on other architectures.

・four types of optimizations
・Optimizations to Exploit the Locality Consciousness and other Unique Features of UPC,
・Optimizations to Keep the Overhead of UPC low
・Optimizations to Exploit Architectural Features
・Standard Optimizations that are Applicable to all Systems Compilers

・creating a strong run-time system that can work effectively with the K42 Operating System
・K42 is able to provide the language run-time system with the control it needs
・The run-time system will be extremely important in future architectures

SUMMARY AND CONCLUSIONS

・UPC is a locality-aware parallel programming language.
・UPC can outperform MPI in random short accesses and can otherwise perform as good as MPI.
・UPC is very productive and UPC applications result in much smaller and more readable code than

2

MPI.
・For future architectures such as PERCS, UPC has the unique opportunity of have very efficient UPC

implementations as most of the pitfalls and obstacles are now revealed along with adequate
solutions.

3

	 Abstract
	 Introduction
	 A Quick UPC Overview
	 Background on PERCS and UPC

	 UPC Compilers on Distribute Memory Systems
	 Low-Level Library Implementations
	 Aggregation and Overlapping of Remote Shared Memory Accesses
	 Low level communication optimizations

	 UPC OPTIMIZATIONS AND MEASUREMENTS ON DISTRIBUTED SHARED MEMORY SYSTEMS
	Shared Address Translation
	UPC Work-sharing Construct Optimizations
	 Performance Limitations Imposed by Sequential C Compilers

	LESSONS LEARNED AND PERCS UPC
	SUMMARY AND CONCLUSIONS

