
読んだ人: みよしたけふみ

Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations

Daniel Cociorva Gerald Baumgartner
J. Ramanujam Marcel Nooijen

Dept. of Computer and Information Science
The Ohio State University

cociorva,gb,clam,saday
@cis.ohio-state.edu

Dept. of Electrical and Computer Engineering
Louisiana State University

jxr@ece.lsu.edu

Chi-Chung Lam P. Sadayappan
David E. Bernholdt Robert Harrison

Department of Chemistry
Princeton University

Nooijen@Princeton.edu
Oak Ridge National Laboratory
bernholdtde@ornl.gov

Pacific Northwest National Laboratory
Robert.Harrison@pnl.gov

ABSTRACT
The accurate modeling of the electronic structure of atoms and
molecules is very computationally intensive. Many models of elec-
tronic structure, such as the Coupled Cluster approach, involve col-
lections of tensor contractions. There are usually a large number
of alternative ways of implementing the tensor contractions, rep-
resenting different trade-offs between the space required for tem-
porary intermediates and the total number of arithmetic operations.
In this paper, we present an algorithm that starts with an operation-
minimal form of the computation and systematically explores the
possible space-time trade-offs to identify the form with lowest cost
that fits within a specified memory limit. Its utility is demonstrated
by applying it to a computation representative of a component in the
CCSD(T) formulation in the NWChem quantum chemistry suite
from Pacific Northwest National Laboratory.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Computations on
matrices; D.3.2 [Language Classifications]: Specialized applica-
tion languages; D.3.4 [Processors]: Compilers and Optimization;
F.2.3 [Tradeoffs between Complexity Measures]; J.2 [Physical
Sciences and Engineering]: Chemistry

General Terms
Algorithms

Keywords
Loop fusion, loop transformation, tile size selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI ’02, June 17–19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

1. INTRODUCTION
The development of high-performance parallel programs for sci-

entific applications is usually very time consuming. The time to de-
velop an efficient parallel program for a computational model can
be a primary limiting factor in the rate of progress of the science.
Our long term goal is to develop a program synthesis system to fa-
cilitate the development of high-performance parallel programs for
a class of scientific computations encountered in quantum chem-
istry. The domain of our focus is electronic structure calculations,
as exemplified by coupled cluster methods, where many compu-
tationally intensive components are expressible as a set of tensor
contractions. We plan to develop a synthesis system that can gener-
ate efficient parallel code for a number of target architectures from
an input specification expressed in a high-level notation.
A critical issue in implementing electronic structure models, e.g.

using coupled cluster methods, is the management of storage re-
quirements for intermediates. Significant savings in computational
cost can be achieved by computing and storing various intermedi-
ate array quantities, that are reused several times in the process of
generating the final results. However, the space requirements for
these intermediates is often extremely large, making it infeasible to
store even on disk. Indeed, multi-dimensional intermediate arrays
as large as 100 to 1000TB arise frequently in these computations.
In this case, there is no choice but to discard and recompute some
of the intermediates. Therefore the following optimization problem
is of great interest: given a set of computations expressed as a se-
quence of tensor contractions (explained later on), and a specified
limit on the amount of available storage, re-structure the compu-
tation so as to minimize the amount of redundant recomputation
required. In this paper, we present a framework that we have devel-
oped to address this problem. The space-time trade-off optimiza-
tion we consider here is part of a planned synthesis system that
incorporates a number of optimization modules.
The computational structures that we address in this paper arise

in scientific application domains that are extremely intensive and
consume significant computer resources at national supercomputer
centers. They are present in computational physics codes model-
ing electronic properties of semiconductors and metals [1, 11, 21],
and in computational chemistry codes such as ACES II, GAMESS,

177

CITED BY 9

2010年3月11日木曜日

100 to 1000TB

2010年3月11日木曜日

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l
T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c

T1f = 0; T2f = 0
for d, f

for e, l
T1f += Bbefl Dcdel

for j, k
T2fjk += T1f Cdfjk

for a, i, j, k
Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memory reduction.

Gaussian, NWChem, PSI, and MOLPRO. In particular, they com-
prise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and
molecules [19, 22]. Computational approaches to modeling the
structure and interactions of molecules, the electronic and optical
properties of molecules, the heats and rates of chemical reactions,
etc., are crucial to the understanding of chemical processes in real-
world systems.
The paper is organized as follows. In the next section, we elab-

orate on the computational context of interest, the pertinent opti-
mization issues and an overview of the overall synthesis system
that is under development. Section 3 elaborates on the problem us-
ing a concrete example that is abstracted from a computationally
intensive calculation in the NWChem [10] system. Section 4 pro-
vides a high-level description of the solution approach. Sections 5
and 6 present details of the approach to solve the space-time trade-
off problem. Section 7 presents results from the application of the
new algorithm to the example abstracted from NWChem. Conclu-
sions are provided in Section 9.

2. THE COMPUTATIONAL CONTEXT
In the class of computations considered, the final result to be

computed can be expressed in terms of tensor contractions, essen-
tially a collection of multi-dimensional summations of the product
of several input arrays. Due to commutativity, associativity, and
distributivity, there are many different ways to compute the final
result, and they could differ widely in the number of floating point
operations required. Consider the following expression:

If this expression is directly translated to code (with ten nested
loops, for indices), the total number of arithmetic operations
required will be if the range of each index is .
Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

This corresponds to the formula sequence shown in Fig. 1(a) and
can be directly translated into code as shown in Fig. 1(b). This
form only requires operations. However, additional space
is required to store temporary arrays and . Often, the space
requirements for the temporary arrays poses a serious problem. For
this example, abstracted from a quantum chemistry model, the ar-
ray extents along indices are the largest, while the extents
along indices are the smallest. Therefore, the size of tempo-
rary array would dominate the total memory requirement.

The operation minimization problem encountered here is a gen-
eralization of the well known matrix-chain multiplication problem,
where a linear chain of matrices to be multiplied is given, e.g.
ABCD, and the optimal order of pair-wise multiplications is sought,
i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for compu-
tations expressed as sets of matrix contractions, although the final
realization of the computation is in terms of a sequence of matrix-
matrix products, there is additional freedom in choosing the pair-
wise products. For the above example, instead of forcing a sin-
gle chain order, e.g. ABCD, other orders are possible, such as the
BCDA order shown for the operation-reduced form above.
We have previously shown that the problem of determining the

operator tree with minimal operation count is NP-complete, and
have developed a pruning search procedure [17, 18] that is very
efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic
operations, its implementation will require the use of temporary
intermediate arrays to hold the partial results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays
needed for the “operation-minimal” form are too large to even fit
on disk.
A systematic way to explore ways of reducing the memory re-

quirement for the computation is to view it in terms of potential
loop fusions. Loop fusion merges loop nests with common outer
loops into larger imperfectly nested loops. When one loop nest
produces an intermediate array which is consumed by another loop
nest, fusing the two loop nests allows the dimension correspond-
ing to the fused loop to be eliminated in the array. This results in
a smaller intermediate array and thus reduces the memory require-
ments. For the example considered, the application of fusion is
illustrated in Fig. 1(c). By use of loop fusion, for this example it
can be seen that can actually be reduced to a scalar and to
a 2-dimensional array, without changing the number of arithmetic
operations.
For a computation comprising of a number of nested loops, there

will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. In prior work, we
addressed the problem of finding the choice of fusions for a given
operator tree that minimized the total space required for all arrays
after fusion [14, 16, 15].
However, for many of the computational structures within the

coupled cluster component of the NWChem software suite, we find
instances where the minimal memory required after optimal loop
fusion is still too large. In such situations, in order to create an
executable implementation, it is essential to trade space for time,
by only storing lower dimensional slices of the largest arrays, and
recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously
proposed concept of a fusion graph and develop an algorithm that

178

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l
T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c

T1f = 0; T2f = 0
for d, f

for e, l
T1f += Bbefl Dcdel

for j, k
T2fjk += T1f Cdfjk

for a, i, j, k
Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memory reduction.

Gaussian, NWChem, PSI, and MOLPRO. In particular, they com-
prise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and
molecules [19, 22]. Computational approaches to modeling the
structure and interactions of molecules, the electronic and optical
properties of molecules, the heats and rates of chemical reactions,
etc., are crucial to the understanding of chemical processes in real-
world systems.
The paper is organized as follows. In the next section, we elab-

orate on the computational context of interest, the pertinent opti-
mization issues and an overview of the overall synthesis system
that is under development. Section 3 elaborates on the problem us-
ing a concrete example that is abstracted from a computationally
intensive calculation in the NWChem [10] system. Section 4 pro-
vides a high-level description of the solution approach. Sections 5
and 6 present details of the approach to solve the space-time trade-
off problem. Section 7 presents results from the application of the
new algorithm to the example abstracted from NWChem. Conclu-
sions are provided in Section 9.

2. THE COMPUTATIONAL CONTEXT
In the class of computations considered, the final result to be

computed can be expressed in terms of tensor contractions, essen-
tially a collection of multi-dimensional summations of the product
of several input arrays. Due to commutativity, associativity, and
distributivity, there are many different ways to compute the final
result, and they could differ widely in the number of floating point
operations required. Consider the following expression:

If this expression is directly translated to code (with ten nested
loops, for indices), the total number of arithmetic operations
required will be if the range of each index is .
Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

This corresponds to the formula sequence shown in Fig. 1(a) and
can be directly translated into code as shown in Fig. 1(b). This
form only requires operations. However, additional space
is required to store temporary arrays and . Often, the space
requirements for the temporary arrays poses a serious problem. For
this example, abstracted from a quantum chemistry model, the ar-
ray extents along indices are the largest, while the extents
along indices are the smallest. Therefore, the size of tempo-
rary array would dominate the total memory requirement.

The operation minimization problem encountered here is a gen-
eralization of the well known matrix-chain multiplication problem,
where a linear chain of matrices to be multiplied is given, e.g.
ABCD, and the optimal order of pair-wise multiplications is sought,
i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for compu-
tations expressed as sets of matrix contractions, although the final
realization of the computation is in terms of a sequence of matrix-
matrix products, there is additional freedom in choosing the pair-
wise products. For the above example, instead of forcing a sin-
gle chain order, e.g. ABCD, other orders are possible, such as the
BCDA order shown for the operation-reduced form above.
We have previously shown that the problem of determining the

operator tree with minimal operation count is NP-complete, and
have developed a pruning search procedure [17, 18] that is very
efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic
operations, its implementation will require the use of temporary
intermediate arrays to hold the partial results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays
needed for the “operation-minimal” form are too large to even fit
on disk.
A systematic way to explore ways of reducing the memory re-

quirement for the computation is to view it in terms of potential
loop fusions. Loop fusion merges loop nests with common outer
loops into larger imperfectly nested loops. When one loop nest
produces an intermediate array which is consumed by another loop
nest, fusing the two loop nests allows the dimension correspond-
ing to the fused loop to be eliminated in the array. This results in
a smaller intermediate array and thus reduces the memory require-
ments. For the example considered, the application of fusion is
illustrated in Fig. 1(c). By use of loop fusion, for this example it
can be seen that can actually be reduced to a scalar and to
a 2-dimensional array, without changing the number of arithmetic
operations.
For a computation comprising of a number of nested loops, there

will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. In prior work, we
addressed the problem of finding the choice of fusions for a given
operator tree that minimized the total space required for all arrays
after fusion [14, 16, 15].
However, for many of the computational structures within the

coupled cluster component of the NWChem software suite, we find
instances where the minimal memory required after optimal loop
fusion is still too large. In such situations, in order to create an
executable implementation, it is essential to trade space for time,
by only storing lower dimensional slices of the largest arrays, and
recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously
proposed concept of a fusion graph and develop an algorithm that

178

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l
T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k
T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k
Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c

T1f = 0; T2f = 0
for d, f

for e, l
T1f += Bbefl Dcdel

for j, k
T2fjk += T1f Cdfjk

for a, i, j, k
Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memory reduction.

Gaussian, NWChem, PSI, and MOLPRO. In particular, they com-
prise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and
molecules [19, 22]. Computational approaches to modeling the
structure and interactions of molecules, the electronic and optical
properties of molecules, the heats and rates of chemical reactions,
etc., are crucial to the understanding of chemical processes in real-
world systems.
The paper is organized as follows. In the next section, we elab-

orate on the computational context of interest, the pertinent opti-
mization issues and an overview of the overall synthesis system
that is under development. Section 3 elaborates on the problem us-
ing a concrete example that is abstracted from a computationally
intensive calculation in the NWChem [10] system. Section 4 pro-
vides a high-level description of the solution approach. Sections 5
and 6 present details of the approach to solve the space-time trade-
off problem. Section 7 presents results from the application of the
new algorithm to the example abstracted from NWChem. Conclu-
sions are provided in Section 9.

2. THE COMPUTATIONAL CONTEXT
In the class of computations considered, the final result to be

computed can be expressed in terms of tensor contractions, essen-
tially a collection of multi-dimensional summations of the product
of several input arrays. Due to commutativity, associativity, and
distributivity, there are many different ways to compute the final
result, and they could differ widely in the number of floating point
operations required. Consider the following expression:

If this expression is directly translated to code (with ten nested
loops, for indices), the total number of arithmetic operations
required will be if the range of each index is .
Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:

This corresponds to the formula sequence shown in Fig. 1(a) and
can be directly translated into code as shown in Fig. 1(b). This
form only requires operations. However, additional space
is required to store temporary arrays and . Often, the space
requirements for the temporary arrays poses a serious problem. For
this example, abstracted from a quantum chemistry model, the ar-
ray extents along indices are the largest, while the extents
along indices are the smallest. Therefore, the size of tempo-
rary array would dominate the total memory requirement.

The operation minimization problem encountered here is a gen-
eralization of the well known matrix-chain multiplication problem,
where a linear chain of matrices to be multiplied is given, e.g.
ABCD, and the optimal order of pair-wise multiplications is sought,
i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for compu-
tations expressed as sets of matrix contractions, although the final
realization of the computation is in terms of a sequence of matrix-
matrix products, there is additional freedom in choosing the pair-
wise products. For the above example, instead of forcing a sin-
gle chain order, e.g. ABCD, other orders are possible, such as the
BCDA order shown for the operation-reduced form above.
We have previously shown that the problem of determining the

operator tree with minimal operation count is NP-complete, and
have developed a pruning search procedure [17, 18] that is very
efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic
operations, its implementation will require the use of temporary
intermediate arrays to hold the partial results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays
needed for the “operation-minimal” form are too large to even fit
on disk.
A systematic way to explore ways of reducing the memory re-

quirement for the computation is to view it in terms of potential
loop fusions. Loop fusion merges loop nests with common outer
loops into larger imperfectly nested loops. When one loop nest
produces an intermediate array which is consumed by another loop
nest, fusing the two loop nests allows the dimension correspond-
ing to the fused loop to be eliminated in the array. This results in
a smaller intermediate array and thus reduces the memory require-
ments. For the example considered, the application of fusion is
illustrated in Fig. 1(c). By use of loop fusion, for this example it
can be seen that can actually be reduced to a scalar and to
a 2-dimensional array, without changing the number of arithmetic
operations.
For a computation comprising of a number of nested loops, there

will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. In prior work, we
addressed the problem of finding the choice of fusions for a given
operator tree that minimized the total space required for all arrays
after fusion [14, 16, 15].
However, for many of the computational structures within the

coupled cluster component of the NWChem software suite, we find
instances where the minimal memory required after optimal loop
fusion is still too large. In such situations, in order to create an
executable implementation, it is essential to trade space for time,
by only storing lower dimensional slices of the largest arrays, and
recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously
proposed concept of a fusion graph and develop an algorithm that

178

2010年3月11日木曜日

Optimization System

Algebraic Transformations

Memory Minimization

Space-Time Transformation

Data Locality Optimization

Data Distribution and Partitioning

2010年3月11日木曜日

Fusion Graph

T2T1T
c f i ja e i j

T

k
f1

c e b
f2

a f b k

X +ij
b k

Y +bk

faec
E +ceaf

Figure 5: Fusion graph for unfused operation-minimal form of
loop in Figure 2.

to their parents are shown as dotted edges and do not affect the fu-
sion possibilities. If a pair of loop nests is fused using one or more
common loops, it is captured in the fusion graph by changing the
dashed potential-fusion edges to continuous fusion edges. If more
than two loop nests are fused together, a chain of fusion edges re-
sults, called a fusion chain. The scope of a fusion chain is the set
of nodes it spans. The fusion graph allows us to characterize the
condition for feasibility of a particular combination of fusions: the
scope of any two fusion chains in a fusion graph must either be
disjoint or a subset/superset of each other. Scopes of fusion chains
do not partially overlap because loops do not (i.e., loops must be
either separate or nested).
The fusion graph in Fig. 5 can be used to determine the fusion

possibilities. On the left side of the graph, the edges corresponding
to can all be made fusion edges, suggesting that com-
plete fusion is possible for the loop nests producing and consum-
ing , reducing it to a scalar. Similarly, on the right side of the
graph, the edges corresponding to can also be made fu-
sion edges, reducing to a scalar. Further, by creating fusion edges
for indices , the producer loop for can be fully fused with
the loop that consumes it. However, now the producer loop for

cannot be fused since the addition of any fusion edge (say for
index) will result in partially overlapping fusion chains for and

.
The fully fused version from Fig. 3 can be represented graphi-

cally as shown in Fig. 6(a). Additional vertices have been added
for indices and respectively at the nodes correspond-
ing to the producer loops for and . Now, complete fusion
chains can be created without any partial overlap in the scopes of
the fusion chains. From the figure, it can be seen that in fact the
redundant computation need only be added to one of or to
achieve complete fusion — for example, removing the additional
vertices for at does not violate the non-partial-overlap
condition for fusion.
The fusion graph was used to develop an algorithm [16, 14] to

determine the combination of fusions that minimizes the total stor-
age required for all the temporary intermediate arrays. A bottom-up
dynamic programming approach was used, that maintains a set of
pareto-optimal fusion configurations at each node, merging solu-
tions from children nodes to generate the optimal configurations at
a parent. The two metrics used are the total memory required un-
der the subtree rooted at the node, and the constraints imposed by a
configuration on fusion further up the tree. A configuration is infe-
rior to another if it is “more or equally constraining” with respect
to further fusions than the other, and uses no less memory. At the
root of the tree, the configuration with lowest memory requirement
is chosen.

Although the complexity of the algorithm is exponential in the
number of index variables and the number of solutions could in
theory grow exponentially with the size of the expression tree, the
number of index variables in practical applications is small enough
and there is indication that the pruning is effective in keeping the
size of the solution set at each node small.
The fusion graph framework addresses a memory minimization

problem, without changing the operation count. If we applied it to
the fusion graph of Fig. 2, the bottom-up dynamic programming al-
gorithm would evaluate a number of potential fusion combinations
and find that fusion could be used to reduce the sizes of arrays
and and convert them to scalars. It would also be able to reduce
the size of one of the two temporary arrays or , but would be
unable to reduce the other at all. Although three of four temporary
arrays would be dramatically reduced in size, the size of the sin-
gle remaining temporary array (of size) would make the
problem unexecutable on most systems due to disk storage limits.
An enhancement of the model to capture a wider range of space-

time trade-offs was already seen in Fig. 6(a), where additional ver-
tices were added to the fusion graph to introduce redundant recom-
putation to the producer loops for and and thereby enable
a greater degree of fusion. As discussed earlier, the fully fused
version of the loops results in excellent memory savings but adds
excessive recomputation costs. A combination of fusion and tiling
is needed to achieve a good balance between recomputation and
memory usage. Figure 6(b) shows how the possibility of tiling can
be introduced into the fusion graph. For each loop of a loop nest
that is to be tiled, the corresponding vertex in the fusion graph is
replaced by a pair of vertices — one to represent the outer tiling
loop and another to denote the intra-tile loop. By a choice of fusion
configuration that only involves the tiling loops, a combination of
fusion and tiling can be represented. This framework can be used to
explore a range of space-time trade-offs. However, the search space
is significantly larger than that for the memory minimization prob-
lem discussed in the previous sub-section, requiring that selective
search strategies be developed.
In this paper, we develop a two-step search strategy for explo-

ration of the space-time trade-off:

Search among all possible ways of introducing redundant
loop indices in the fusion graph to reduce memory require-
ments, and determine the optimal set of lower dimensional
intermediate arrays for various total memory limits. In this
step, the use of tiling for partial reduction of array extents is
not considered. However, among all possible combinations
of lower dimensional arrays for intermediates, the combina-
tion that minimizes recomputation cost is determined, for a
specified memory limit. The range from zero to the actual
memory limit is split into subranges within which the op-
timal combination of lower dimensional arrays remains the
same.

Because the first step only considers complete fusion of loops,
each array dimension is either fully eliminated or left intact,
i.e. partial reduction of array extents is not performed. The
objective of the second step is to allow for such arrays. Start-
ing from each of the optimal combinations of lower dimen-
sional intermediate arrays derived in the first step, possible
ways of using tiling to partially expand arrays along previ-
ously compressed dimensions are explored. The goal is to
further reduce recomputation cost by partially expanding ar-
rays to fully utilize the available memory

181

can be used to facilitate enumeration of all possible compatible fusion configurations
for a given computation tree.
The potential for fusion of a common loop among a producer-consumer pair of loop
nests is indicated in the fusion graph through a dashed edge connecting
the corresponding vertices.

2010年3月11日木曜日

Example (1)

T
c f i ja e i j

T T1 T2

c e b k
f1

a f b k
f2

X +ij
b k

Y +bk

faec
E +ceaf

T1 T2T
aet t jiea jifcf t

T
ct

ect t
f1

kbc e
f2

kbfafat t

X +ij
kb

Y +bk

faecfaect t t t

E +ceaf

(a) Fully fused computation from Fig. 3. (b) Partially fused computation from Fig. 4.

Figure 6: Fusion graphs showing redundant compution and tiling.

5. DIMENSION REDUCTION FOR INTER-
MEDIATE ARRAYS

In the first step of the space-time trade-off algorithm we search
among all possible combinations of redundant computations and
loop fusions. The search is structured as a dynamic programming
algorithm with pruning.
The input to this algorithm is an expression tree representing the

operation-minimal computational structure of the input formula.
Expression tree nodes are of four types:

array references [] with index vector ,

function calls () with argument vector ,

summation quantifiers sum(,) with summation indices
and subtree , and

binary operators bin(, ,) with operator (+, -, or *)
and subtrees and .

For each tree node , let indices(v) be the set of loop indices needed
for evaluating , and let fusible(v) be the set of indices that can be
fused with the parent (indices other than summation indices). An
index is a redundant index for node if is not an index of
but of some ancestor node of . E.g., in Fig. 5 indices and are
redundant indices for . Let redundant(v) be the set of redundant
indices for .
Introducing a redundant loop index to a node can allow ad-

ditional fusion between and its parent, which reduces the dimen-
sion of the intermediate array holding the result of , in exchange
for recomputing in every iteration of the loop. The space-time
trade-off algorithm computes for every combination of redundant
indices the loop fusion structure that results in the least amount of
total memory.
In a bottom-up traversal, we compute a set of solutions for each

node . Each solution consists of a nesting of the loops at , the
memory cost , the recomputation cost , and pointers to the
solutions of the subtrees from which this solution was obtained.
A nesting is a sequence of index sets that represents constraints
on the loop structure for computing . E.g., the nesting
indicates that the loops and can be arbitrarily permuted, while
must be nested inside of and . A solution is inferior to

solution if its nesting is more constraining than that of (e.g.,
is more constraining than), and if its memory cost

and recomputation cost are both higher than those of . The set of
solutions for a node is recursively computed as follows:

Suppose is an array reference of the form []. The set
of possible loops around the array node is fusible(t) pow-
erset(redundant(t)) with no constraints on the order of the

loops. For the purpose of space-time trade-offs, we do not
model the cost of reading arrays from disk. Therefore, we
form a solution for each of these nestings with zero memory
and recomputation costs.

Suppose is of the form (). Similar as for array refer-
ences, we form a set of solutions for all possible nestings.
For each nesting , we initialize the memory cost to the stor-
age needed for holding the result of () if all the indices in
are fused with the parent. The recomputation cost is ini-

tialized to the number of times must be recomputed for all
redundant indices in times the cost of a function call.

Suppose is of the form sum(,). For each solution for
subtree , we initialize a solution for the summation node
by adding one to the memory cost (for the scalar holding the
result of the summation assuming full fusion with the par-
ent) and by adding the recomputation cost for the summation
node to that of the subtree. We then remove the summation
indices from the nesting in . All indices that are con-
strained to be nested inside the summation indices must be
removed as well since they cannot be fused with the parent
anymore. Removing a non-summation index from the nest-
ing results in an increase in memory since the dimension of
the resulting array must be stored. Finally, inferior solutions
are pruned from the set of solutions for .

Suppose is of the form bin(, ,). Since the subtrees
and might not have all the indices of (indices(v) is the
union of indices(l) and indices(r)), we first need to compute
all the possible ways in which the solutions for and might
be fused with . For each solution for a subtree, we com-
pute the set of all prefixes of the nesting of (e.g., for the
nesting , the prefix represents the loop structure in
which only is fused with). For all the nestings obtained
in this way we construct new solutions for the subtrees by in-
creasing the memory cost by the array dimensions that now
need to be stored. Then, for all pairs of solutions and
for and , respectively, we merge the constraints on the

loop structure from the nestings of and . If and
have compatible nestings, we obtain a merged nesting for .
E.g., for the nestings and for the subtrees, we
would obtain the nesting for . Finally, we con-
struct solutions for out of the merged nestings by adding
the memory and recomputation costs for to the costs for
the subtrees and then prune inferior solutions.

The result of the above algorithm is a set of solution trees for
the original expression tree. A solution tree contains a nesting and

182

for a, e, c, f
for i, j
Xaecf += Tijae Tijcf

for a, f
for c, e, b, k
T1cebk = f (c,e,b,k)

for c, e
for a, f, b, k
T2afbk = f (a,f,b,k)

for c, e, a, f
for b, k
Yceaf += T1cebk T2afbk

for c, e, a, f
E += Xaecf Yceaf

for a, e, c, f
for i, j
X += Tijae Tijcf

for b, k
T1 = f (c,e,b,k)
T2 = f (a,f,b,k)
Y += T1 T2

E += X Y

array space time
X 1
T1 1
T2 1
Y 1
E 1

Figure 3: Use of redundant computation to allow full fusion.

for a , e , c , f
for a, e, c, f
for i, j
Xaecf += Tijae Tijcf

for b, k
for c, e
T1ce = f (c,e,b,k)

for a, f
T2af = f (a,f,b,k)

for c, e, a, f
Yceaf += T1ce T2af

for c, e, a, f
E += Xaecf Yceaf

array space time
X
T1
T2
Y
E 1

Figure 4: Use of tiling and partial fusion to reduce recomputa-
tion cost.

reuse of the stored integrals in and (each element of and
is used times). However, it is impractical due to the

huge memory requirement. With and , the size
of , is bytes and the size of , is bytes.
By fusing together pairs of producer-consumer loops in the compu-
tation, reductions in the needed array sizes may be sought, since the
fusion of a loop with common index in the pair of loops allows the
elimination of that dimension of the intermediate array. It can be
seen that the loop that produces (with indices), the loop
that produces (with indices) and the loop that consumes
and to produce (with indices) can all be fully fused

together, permitting the elimination of all explicit indices in and
to reduce them to scalars. However, the loops producing

(with indices) and (with indices) cannot also
be directly fused with the other three loops because their indices do
not match.
Figure 3 shows how reduction of space for and can be

achieved by introduction of redundant loops around their producer
loops — add loops with the missing indices for and for
. Now all five of the loops have common indices that

can be fused, permitting elimination of those indices from all tem-
poraries. Further, by fusing together the producer loops for and

with their consumer loop that produces , the indices can
also be eliminated from and . Dramatic reduction of mem-
ory space is achieved, reducing all temporaries and to
scalars. However, the space savings come at the price of significant
increase in computation. Now, no reuse is achieved of the quantities
derived from the expensive integral calculations and . Since

is of the order of 1000 in practice, the integral calculations now
dominate the total compute time, increasing the operation count by
three orders of magnitude over the unfused form in Fig. 2.

A desirable solution would be somewhere in between the un-
fused structure of Fig. 2 (with maximal memory requirement and
maximal reuse) and the fully fused structure of Fig. 3 (with min-
imal memory requirement and minimal reuse). This is shown in
Fig. 4, where tiling and partial fusion of the loops is employed.
The loops with indices are tiled by splitting each of those
indices into a pair of indices. The indices with a superscript repre-
sent the tiling loops and the unsuperscripted indices now stand for
intra-tile loops with a range of , the block size used for tiling. For
each tile , blocks of and of size are com-
puted and used to form product contributions to the appropriate
components of , which are stored in an array of size .
As the tile size is increased, the cost of function computation

for decreases by factor , due to the reuse enabled. How-
ever, the size of the needed temporary array for increases as
(the space needed for can actually be reduced back to a scalar by
fusing its producer loop with the loop producing E, but ’s space
requirement cannot be decreased). When becomes larger than
the size of physical memory, expensive paging in and out of disk
will be required for . Further, there are diminishing returns on
reuse of and after becomes comparable to , since
the loop producing now becomes the dominant one. So we can
expect that as is increased, performance will improve and then
level off and then deteriorate. The optimum value of will clearly
depend on the cost of access at the various levels of the memory
hierarchy.
The computation considered here is just one component of the
term, which in turn is only one of very many terms that must

be computed. Although developers of quantum chemistry codes
naturally recognize and perform some of these optimizations, a col-
lective analysis of all these computations to determine their optimal
implementation is beyond the scope of manual effort. While recent
developments in optimizing compiler research have resulted in sig-
nificant strides in data locality optimization, we are unaware of any
existing work that addresses the kind of space-time trade-off opti-
mization required in the context we consider.

4. SOLUTION APPROACH: THE FUSION
GRAPH

The operation-minimization procedure discussed above usually
results in the creation of intermediate temporary arrays. Sometimes
these intermediate arrays that help in reducing the number of arith-
metic operations create a problem with the memory capacity re-
quired.
For a computation comprising of a number of nested loops, there

will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. A data structure
that we call a can be used to facilitate enumeration
of all possible compatible fusion configurations for a given compu-
tation tree.
Figure 5 shows the fusion graph for the unfused form of the com-

putation from Fig. 2. Corresponding to each node in a computation
tree, the fusion graph has a set of vertices corresponding to the
loop indices of the node of the computation tree. In Fig. 5, we
do not show the operator tree corresponding to the computation,
but directly illustrate the fusion graph. The potential for fusion of
a common loop among a producer-consumer pair of loop nests is
indicated in the fusion graph through a dashed
edge connecting the corresponding vertices. Leaf nodes in the fu-
sion graph correspond to input arrays or primitive function evalua-
tions and do not represent a loop nest. The edges from the leaves

180

2010年3月11日木曜日

Example (2)

for a, e, c, f
for i, j
Xaecf += Tijae Tijcf

for a, f
for c, e, b, k
T1cebk = f (c,e,b,k)

for c, e
for a, f, b, k
T2afbk = f (a,f,b,k)

for c, e, a, f
for b, k
Yceaf += T1cebk T2afbk

for c, e, a, f
E += Xaecf Yceaf

for a, e, c, f
for i, j
X += Tijae Tijcf

for b, k
T1 = f (c,e,b,k)
T2 = f (a,f,b,k)
Y += T1 T2

E += X Y

array space time
X 1
T1 1
T2 1
Y 1
E 1

Figure 3: Use of redundant computation to allow full fusion.

for a , e , c , f
for a, e, c, f
for i, j
Xaecf += Tijae Tijcf

for b, k
for c, e
T1ce = f (c,e,b,k)

for a, f
T2af = f (a,f,b,k)

for c, e, a, f
Yceaf += T1ce T2af

for c, e, a, f
E += Xaecf Yceaf

array space time
X
T1
T2
Y
E 1

Figure 4: Use of tiling and partial fusion to reduce recomputa-
tion cost.

reuse of the stored integrals in and (each element of and
is used times). However, it is impractical due to the

huge memory requirement. With and , the size
of , is bytes and the size of , is bytes.
By fusing together pairs of producer-consumer loops in the compu-
tation, reductions in the needed array sizes may be sought, since the
fusion of a loop with common index in the pair of loops allows the
elimination of that dimension of the intermediate array. It can be
seen that the loop that produces (with indices), the loop
that produces (with indices) and the loop that consumes
and to produce (with indices) can all be fully fused

together, permitting the elimination of all explicit indices in and
to reduce them to scalars. However, the loops producing

(with indices) and (with indices) cannot also
be directly fused with the other three loops because their indices do
not match.
Figure 3 shows how reduction of space for and can be

achieved by introduction of redundant loops around their producer
loops — add loops with the missing indices for and for
. Now all five of the loops have common indices that

can be fused, permitting elimination of those indices from all tem-
poraries. Further, by fusing together the producer loops for and

with their consumer loop that produces , the indices can
also be eliminated from and . Dramatic reduction of mem-
ory space is achieved, reducing all temporaries and to
scalars. However, the space savings come at the price of significant
increase in computation. Now, no reuse is achieved of the quantities
derived from the expensive integral calculations and . Since

is of the order of 1000 in practice, the integral calculations now
dominate the total compute time, increasing the operation count by
three orders of magnitude over the unfused form in Fig. 2.

A desirable solution would be somewhere in between the un-
fused structure of Fig. 2 (with maximal memory requirement and
maximal reuse) and the fully fused structure of Fig. 3 (with min-
imal memory requirement and minimal reuse). This is shown in
Fig. 4, where tiling and partial fusion of the loops is employed.
The loops with indices are tiled by splitting each of those
indices into a pair of indices. The indices with a superscript repre-
sent the tiling loops and the unsuperscripted indices now stand for
intra-tile loops with a range of , the block size used for tiling. For
each tile , blocks of and of size are com-
puted and used to form product contributions to the appropriate
components of , which are stored in an array of size .
As the tile size is increased, the cost of function computation

for decreases by factor , due to the reuse enabled. How-
ever, the size of the needed temporary array for increases as
(the space needed for can actually be reduced back to a scalar by
fusing its producer loop with the loop producing E, but ’s space
requirement cannot be decreased). When becomes larger than
the size of physical memory, expensive paging in and out of disk
will be required for . Further, there are diminishing returns on
reuse of and after becomes comparable to , since
the loop producing now becomes the dominant one. So we can
expect that as is increased, performance will improve and then
level off and then deteriorate. The optimum value of will clearly
depend on the cost of access at the various levels of the memory
hierarchy.
The computation considered here is just one component of the
term, which in turn is only one of very many terms that must

be computed. Although developers of quantum chemistry codes
naturally recognize and perform some of these optimizations, a col-
lective analysis of all these computations to determine their optimal
implementation is beyond the scope of manual effort. While recent
developments in optimizing compiler research have resulted in sig-
nificant strides in data locality optimization, we are unaware of any
existing work that addresses the kind of space-time trade-off opti-
mization required in the context we consider.

4. SOLUTION APPROACH: THE FUSION
GRAPH

The operation-minimization procedure discussed above usually
results in the creation of intermediate temporary arrays. Sometimes
these intermediate arrays that help in reducing the number of arith-
metic operations create a problem with the memory capacity re-
quired.
For a computation comprising of a number of nested loops, there

will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. A data structure
that we call a can be used to facilitate enumeration
of all possible compatible fusion configurations for a given compu-
tation tree.
Figure 5 shows the fusion graph for the unfused form of the com-

putation from Fig. 2. Corresponding to each node in a computation
tree, the fusion graph has a set of vertices corresponding to the
loop indices of the node of the computation tree. In Fig. 5, we
do not show the operator tree corresponding to the computation,
but directly illustrate the fusion graph. The potential for fusion of
a common loop among a producer-consumer pair of loop nests is
indicated in the fusion graph through a dashed
edge connecting the corresponding vertices. Leaf nodes in the fu-
sion graph correspond to input arrays or primitive function evalua-
tions and do not represent a loop nest. The edges from the leaves

180

T
c f i ja e i j

T T1 T2

c e b k
f1

a f b k
f2

X +ij
b k

Y +bk

faec
E +ceaf

T1 T2T
aet t jiea jifcf t

T
ct

ect t
f1

kbc e
f2

kbfafat t

X +ij
kb

Y +bk

faecfaect t t t

E +ceaf

(a) Fully fused computation from Fig. 3. (b) Partially fused computation from Fig. 4.

Figure 6: Fusion graphs showing redundant compution and tiling.

5. DIMENSION REDUCTION FOR INTER-
MEDIATE ARRAYS

In the first step of the space-time trade-off algorithm we search
among all possible combinations of redundant computations and
loop fusions. The search is structured as a dynamic programming
algorithm with pruning.
The input to this algorithm is an expression tree representing the

operation-minimal computational structure of the input formula.
Expression tree nodes are of four types:

array references [] with index vector ,

function calls () with argument vector ,

summation quantifiers sum(,) with summation indices
and subtree , and

binary operators bin(, ,) with operator (+, -, or *)
and subtrees and .

For each tree node , let indices(v) be the set of loop indices needed
for evaluating , and let fusible(v) be the set of indices that can be
fused with the parent (indices other than summation indices). An
index is a redundant index for node if is not an index of
but of some ancestor node of . E.g., in Fig. 5 indices and are
redundant indices for . Let redundant(v) be the set of redundant
indices for .
Introducing a redundant loop index to a node can allow ad-

ditional fusion between and its parent, which reduces the dimen-
sion of the intermediate array holding the result of , in exchange
for recomputing in every iteration of the loop. The space-time
trade-off algorithm computes for every combination of redundant
indices the loop fusion structure that results in the least amount of
total memory.
In a bottom-up traversal, we compute a set of solutions for each

node . Each solution consists of a nesting of the loops at , the
memory cost , the recomputation cost , and pointers to the
solutions of the subtrees from which this solution was obtained.
A nesting is a sequence of index sets that represents constraints
on the loop structure for computing . E.g., the nesting
indicates that the loops and can be arbitrarily permuted, while
must be nested inside of and . A solution is inferior to

solution if its nesting is more constraining than that of (e.g.,
is more constraining than), and if its memory cost

and recomputation cost are both higher than those of . The set of
solutions for a node is recursively computed as follows:

Suppose is an array reference of the form []. The set
of possible loops around the array node is fusible(t) pow-
erset(redundant(t)) with no constraints on the order of the

loops. For the purpose of space-time trade-offs, we do not
model the cost of reading arrays from disk. Therefore, we
form a solution for each of these nestings with zero memory
and recomputation costs.

Suppose is of the form (). Similar as for array refer-
ences, we form a set of solutions for all possible nestings.
For each nesting , we initialize the memory cost to the stor-
age needed for holding the result of () if all the indices in
are fused with the parent. The recomputation cost is ini-

tialized to the number of times must be recomputed for all
redundant indices in times the cost of a function call.

Suppose is of the form sum(,). For each solution for
subtree , we initialize a solution for the summation node
by adding one to the memory cost (for the scalar holding the
result of the summation assuming full fusion with the par-
ent) and by adding the recomputation cost for the summation
node to that of the subtree. We then remove the summation
indices from the nesting in . All indices that are con-
strained to be nested inside the summation indices must be
removed as well since they cannot be fused with the parent
anymore. Removing a non-summation index from the nest-
ing results in an increase in memory since the dimension of
the resulting array must be stored. Finally, inferior solutions
are pruned from the set of solutions for .

Suppose is of the form bin(, ,). Since the subtrees
and might not have all the indices of (indices(v) is the
union of indices(l) and indices(r)), we first need to compute
all the possible ways in which the solutions for and might
be fused with . For each solution for a subtree, we com-
pute the set of all prefixes of the nesting of (e.g., for the
nesting , the prefix represents the loop structure in
which only is fused with). For all the nestings obtained
in this way we construct new solutions for the subtrees by in-
creasing the memory cost by the array dimensions that now
need to be stored. Then, for all pairs of solutions and
for and , respectively, we merge the constraints on the

loop structure from the nestings of and . If and
have compatible nestings, we obtain a merged nesting for .
E.g., for the nestings and for the subtrees, we
would obtain the nesting for . Finally, we con-
struct solutions for out of the merged nestings by adding
the memory and recomputation costs for to the costs for
the subtrees and then prune inferior solutions.

The result of the above algorithm is a set of solution trees for
the original expression tree. A solution tree contains a nesting and

182

2010年3月11日木曜日

Space-Time Tradeoff Exploration

T2T1T
c f i ja e i j

T

k
f1

c e b
f2

a f b k

X +ij
b k

Y +bk

faec
E +ceaf

Figure 5: Fusion graph for unfused operation-minimal form of
loop in Figure 2.

to their parents are shown as dotted edges and do not affect the fu-
sion possibilities. If a pair of loop nests is fused using one or more
common loops, it is captured in the fusion graph by changing the
dashed potential-fusion edges to continuous fusion edges. If more
than two loop nests are fused together, a chain of fusion edges re-
sults, called a fusion chain. The scope of a fusion chain is the set
of nodes it spans. The fusion graph allows us to characterize the
condition for feasibility of a particular combination of fusions: the
scope of any two fusion chains in a fusion graph must either be
disjoint or a subset/superset of each other. Scopes of fusion chains
do not partially overlap because loops do not (i.e., loops must be
either separate or nested).
The fusion graph in Fig. 5 can be used to determine the fusion

possibilities. On the left side of the graph, the edges corresponding
to can all be made fusion edges, suggesting that com-
plete fusion is possible for the loop nests producing and consum-
ing , reducing it to a scalar. Similarly, on the right side of the
graph, the edges corresponding to can also be made fu-
sion edges, reducing to a scalar. Further, by creating fusion edges
for indices , the producer loop for can be fully fused with
the loop that consumes it. However, now the producer loop for

cannot be fused since the addition of any fusion edge (say for
index) will result in partially overlapping fusion chains for and

.
The fully fused version from Fig. 3 can be represented graphi-

cally as shown in Fig. 6(a). Additional vertices have been added
for indices and respectively at the nodes correspond-
ing to the producer loops for and . Now, complete fusion
chains can be created without any partial overlap in the scopes of
the fusion chains. From the figure, it can be seen that in fact the
redundant computation need only be added to one of or to
achieve complete fusion — for example, removing the additional
vertices for at does not violate the non-partial-overlap
condition for fusion.
The fusion graph was used to develop an algorithm [16, 14] to

determine the combination of fusions that minimizes the total stor-
age required for all the temporary intermediate arrays. A bottom-up
dynamic programming approach was used, that maintains a set of
pareto-optimal fusion configurations at each node, merging solu-
tions from children nodes to generate the optimal configurations at
a parent. The two metrics used are the total memory required un-
der the subtree rooted at the node, and the constraints imposed by a
configuration on fusion further up the tree. A configuration is infe-
rior to another if it is “more or equally constraining” with respect
to further fusions than the other, and uses no less memory. At the
root of the tree, the configuration with lowest memory requirement
is chosen.

Although the complexity of the algorithm is exponential in the
number of index variables and the number of solutions could in
theory grow exponentially with the size of the expression tree, the
number of index variables in practical applications is small enough
and there is indication that the pruning is effective in keeping the
size of the solution set at each node small.
The fusion graph framework addresses a memory minimization

problem, without changing the operation count. If we applied it to
the fusion graph of Fig. 2, the bottom-up dynamic programming al-
gorithm would evaluate a number of potential fusion combinations
and find that fusion could be used to reduce the sizes of arrays
and and convert them to scalars. It would also be able to reduce
the size of one of the two temporary arrays or , but would be
unable to reduce the other at all. Although three of four temporary
arrays would be dramatically reduced in size, the size of the sin-
gle remaining temporary array (of size) would make the
problem unexecutable on most systems due to disk storage limits.
An enhancement of the model to capture a wider range of space-

time trade-offs was already seen in Fig. 6(a), where additional ver-
tices were added to the fusion graph to introduce redundant recom-
putation to the producer loops for and and thereby enable
a greater degree of fusion. As discussed earlier, the fully fused
version of the loops results in excellent memory savings but adds
excessive recomputation costs. A combination of fusion and tiling
is needed to achieve a good balance between recomputation and
memory usage. Figure 6(b) shows how the possibility of tiling can
be introduced into the fusion graph. For each loop of a loop nest
that is to be tiled, the corresponding vertex in the fusion graph is
replaced by a pair of vertices — one to represent the outer tiling
loop and another to denote the intra-tile loop. By a choice of fusion
configuration that only involves the tiling loops, a combination of
fusion and tiling can be represented. This framework can be used to
explore a range of space-time trade-offs. However, the search space
is significantly larger than that for the memory minimization prob-
lem discussed in the previous sub-section, requiring that selective
search strategies be developed.
In this paper, we develop a two-step search strategy for explo-

ration of the space-time trade-off:

Search among all possible ways of introducing redundant
loop indices in the fusion graph to reduce memory require-
ments, and determine the optimal set of lower dimensional
intermediate arrays for various total memory limits. In this
step, the use of tiling for partial reduction of array extents is
not considered. However, among all possible combinations
of lower dimensional arrays for intermediates, the combina-
tion that minimizes recomputation cost is determined, for a
specified memory limit. The range from zero to the actual
memory limit is split into subranges within which the op-
timal combination of lower dimensional arrays remains the
same.

Because the first step only considers complete fusion of loops,
each array dimension is either fully eliminated or left intact,
i.e. partial reduction of array extents is not performed. The
objective of the second step is to allow for such arrays. Start-
ing from each of the optimal combinations of lower dimen-
sional intermediate arrays derived in the first step, possible
ways of using tiling to partially expand arrays along previ-
ously compressed dimensions are explored. The goal is to
further reduce recomputation cost by partially expanding ar-
rays to fully utilize the available memory

181

2010年3月11日木曜日

Space-Time optimization

Dimension Reduction for Intermediate Arrays

search among all possible combination

memory and recomputation costs

Partial Expansion of Reduced Intermediates

resort to array expansion

for determining the best choice for array
expansion costs

2010年3月11日木曜日

Result

100 105 1010 1015 1020 1025

Recomputation cost (floating point operations)

100

105

1010

1015
M

em
or

y
us

ag
e

(w
or

ds
)

Memory limit1

2

3

4

5

6

Figure 11: Relationship between memory usage and recompu-
tation cost. Solid triangles represent the 6 different solutions
produced by the first step of the space-time trade-off algorithm.
The horizontal line shows the hard memory limit of
words used for this example. Except for solution 1, which uses
more memory than the words limit, all the other solutions
are analyzed by the second step of the algorithm.

considered for this example, which in turn generates a very limited
number of solutions. In general, any of the solutions obtained in
step one could become the optimal solution after tiling.
We note that the final solution is not trivial, in fact it has a rather

complex structure. We also observe that, although their cost is simi-
lar, all the solutions (the tiled versions of 2 through 6) have abstract
syntax trees that are quite different. Indeed, even for a relatively
simple formula, like the one used in this example, the collection
of solutions is rather rich and non-trivial. Manual optimization is
unlikely to find and test all possibilities, especially for larger trees.
It is also interesting to note that one of the solutions produced by
the algorithm (the tiled version of 6) is identical to the manually
optimized pseudo-code presented in Fig. 4. Its recomputation cost
of operations is roughly one order of magnitude higher
than the cost of the optimal solution.
We investigate the recomputation cost of the optimal code in

comparison with that of the manually generated code for various
values of the input parameters , , and , consistent with their
physical meaning. We find, as expected, that the structure of the op-
timal code may change from one set of input parameters to another.
The improvement factor over the manual code presented in Fig. 4
ranges from 1 (when the manual code is optimal) to 20, depending
on , , and .

8. RELATED WORK
Much work has been done on improving locality and parallelism

by loop fusion. Kennedy and McKinley [13] presented an algo-
rithm for fusing a collection of loops to minimize parallel loop
synchronization and maximize parallelism. They proved that find-
ing loop fusions that maximizes locality is NP-hard. Darte [5] dis-
cusses the complexity of maximal fusion of parallel loops. A fast
algorithm was presented by Kennedy in [12] that allows accurate
modeling of data sharing as well as the use of fusion enabling trans-
formations. Ding [6] illustrates the use of loop fusion in reducing
storage requirements through an example, but does not provide a
general solution. Gao et al. [8] studied the contraction of arrays
into scalars through loop fusion as a means to reduce array access

overhead. They partitioned a collection of loop nests into fusible
clusters using a max-flow min-cut algorithm, taking into account
the data dependencies.
Loop fusion in the context of delayed evaluation of array expres-

sions in compiling APL programs has been discussed by Guibas
and Wyatt [9]. As part of their algorithm, a general buffering mech-
anism was devised to save portions of a sub-expression that will be
repeatedly needed, to avoid re-computation. They considered loop
fusion without any loop reordering; and their work is not aimed
at minimizing array sizes. Lewis et al. [20] discusses the applica-
tion of fusion directly to array statements in languages such as F90
and ZPL. Callahan et al. [2] present a technique to convert array
references to scalar accesses in innermost loops.
There has been some recent work on using loop fusion for mem-

ory reduction for sequential execution. Fraboulet et al. [7] use loop
alignment to reduce memory requirement between adjacent loops
by formulating the one-dimensional version of the problem as a net-
work flow problem. Song [23] and Song et al. [25, 24] present a dif-
ferent network flow formulation of the memory reduction problem
and they include a simple model of cache misses as well. However,
they do not consider the issue of trading off memory for recompu-
tation.

9. CONCLUSION
This paper addressed a space-time trade-off problem that arises

in the context of a larger project on developing a program synthe-
sis system, targeted at the development of high-performance par-
allel programs for a class of computations encountered in quan-
tum chemistry. A two step algorithm was developed for the space-
time trade-off optimization problem. Results were presented of its
application to a test case abstracted from the quantum chemistry
code NWChem. The solution derived using our implementation of
the algorithm reduces the recomputation cost of the calculation by
about an order of magnitude for typical problem sizes.

10. ACKNOWLEDGMENTS
We are grateful to the National Science Foundation for support of

this work through the Information Technology Research Program
(CHE-0121676).

11. REFERENCES
[1] W. Aulbur. Parallel Implementation of Quasiparticle

Calculations of Semiconductors and Insulators. PhD thesis,
The Ohio State University, Oct. 1996.

[2] D. Callahan, S.Carr, and K. Kennedy. Improving register
allocation for subscripted variables. In SIGPLAN Conference
on Programming Language Design and Implementation,
White Plains, NY, June 1990.

[3] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan,
M. Nooijen, D. Bernholdt, and R. Harrison. Towards
automatic synthesis of high-performance codes for electronic
structure calculations: Data locality optimization. In
International Conference on High Performance Computing,
Dec. 2001.

[4] D. Cociorva, J. Wilkins, C.-C. Lam, G. Baumgartner,
P. Sadayappan, and J. Ramanujam. Loop optimization for a
class of memory-constrained computations. In 15th ACM
International Conference on Supercomputing, pages
500–509, Sorrento, Italy, June 2001.

[5] A. Darte. On the complexity of loop fusion. In International
Conference on Parallel Architectures and Compilation
Techniques, Newport Beach, CA, Oct. 1999.

185

2010年3月11日木曜日

