A Task-centric...(PACT'09)

```
@inproceedings{kelm-pact09, author = {John H. Kelm and Daniel R. Johnson, Steven S. Lumetta and Matthew I. Frank and Sanjay J. Patel}, title = {A Task-centric Memory Model for Scalable Accelarator Architectures}, booktitle = {PACT '09: Proceedings of the 18th international conference on Parallel architectures and compilation techniques}, year = {2009}, pages = {???--???}, location = {Raleigh, North Carolina},
```

1024-core で , MIMD(SIMDっぽくない , 従来不向きとされていた) プログラムを実行するためのメモリ管理の話 .

visual program における共有データへのアクセスを解析

全体のキャッシュを H/W で管理するのではなく S/W で管理するためのプロトコルを規定 キューによるタスク管理で complete なタイミングでバリアを実現 ->[6] 結果は他のタスクマネジメント / メモリマネジメント手法との比較ではなかった . 命令のロードとかってどうしてるんだろう?

以下論文より

Abstract

- · task-centric memory model
 - · uses a software protocol
 - · working in collaboration with hardware caches
 - to maintain a coherent, singl-address space view of memory w/o HW support
- · for 1024-core MIMD accelarotor; Rigel

Introduction

- task-centric memory model
 - · hw/sw protocol for maintaining a coherent view of shared memory for accelarotor
- ・ visual computing が対象
 - ・ a form of bulk sync. processing を使って開発される
 - ・ barrier の間 (interval) は独立した並列処理の単位 (task) が並列に実行
 - ・ analysis によると well-structured sharing patterns である
- ・ DSM と似てる.違いは
 - ・private \$ をもった 1chip のプロセッサであるため shared-global \$ へのアクセスコストが小さい
- ・ 1024-core の accelarotor である Rigel が対象
 - a single cacheable address space
 - · w/o hardware-enforced \$ coherence across all cores on the chip
- Contributions
 - ・ data shareing patterns for class of emerging workloads の観察
 - a scalable task-centric memory model (for 1000-cores)
 - optimization
 - prefetching from DRAM is unimpeded and most beneficial to perf.
 - · overhead of the task-centric model can be minimal

Motivation/Background

- ・ data-parallel execution model だけじゃなくて irregular task-parallel computation も考えたい
- · Application Chracterization
 - Parallelism Structure(Programming styles)
 - · bulk sync. processing
 - - the tasks exchange little or no data within an interval
 - - at the barrier, modified shared data is made globally visible
 - - mostly-data-parallel, task-based shared-memory programming model, coherence management is required to enable sharing
 - · do not depend on the HW support
 - the programmer's attempt to create scalable code(minimum sharing)
 - · Sharing Patterns
 - · sync. characteristics
 - · benchmarks
 - MRI benchmark(VISBench)
 - - CG, sobl edge detection, k-means clustering, DMM(Rigel kernle benchmark suite)
 - - GJK collision dtection benchmark(a freely-available seq.)
 - · Heat (Cilk)
 - Fig.1 and Fig.2 は, the freq. of non-private loads/stores
 - the majority of non-private loads are reads to data produced before the current interval began
 - · both conflict reads and writes to data shared
 - · Accelarotor Workload Characteristics
 - · characteristics
 - · read shared data is present within an iterval
 - · sync. is coars-graind
 - · small amounts of write-shared data within an interval
 - - Fine-graind sync. (ex. atomic updates to shared data) is present but rare
 - - wirte sharing within an interval is rare
 - · little coherence management is required
 - · Cache Coherence Management
 - · weekly consistent memory models
 - explict local and global memory operations
 - · task-based programming model
 - as a substitute for HW \$
- · Related Work
 - bulk-sync. parallel(BSP) model \$ \$ CUDA, OpenCL
 - · OpenMP, Intel's TBB
 - Workload(PARSEC, ALPBench)
 - · Memory Models

Rigel Architecture and Task Model

今日のつぶやき

- ・ MacOSX の iCal 使いになってしまった. およよ (Fri Aug 21 15:55:44 2009)
- ・ MindNode を使ってみてる.かっこいいけど,自動で位置調整してくれないのは,若干不便. (Fri Aug 21 14:29:22 2009)
- ・ さすがに,昨日の残りのドンブリに入ったビールは飲めないです. (Fri Aug 21 14:04:57 2009)
- ・ A Task-centric Memory Model for Scalable Accelerator Architectures を読む (Fri Aug 21 11:22

:18 2009) ・PACT'09 の論文って読めるのも多いのね . (Fri Aug 21 11:21:39 2009)